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Chapter 9

Non-Parametric Density Function Estimation

9.1. Introduction

We have discussed several estimation techniques: method of moments, maximum likelihood, and least

squares estimation. In most cases we have adopted the priveleged position of supposing that we knew a

priori what functional form is appropriate for describing the distribution associated with the random variable.

The complete description of the random variable then merely requires the estimation of some parameters.

However, as we have seen in our discussion of robust M-type estimation it is often the case that we must

make inferences about the noise distribution from the data themselves: we must adopt a non-parametric

approach. In the previous lecture we introduced the idea of using the residuals from a least squares fit to

the observations to guide the choice of loss function that would be appropriate for maximum likelihood

estimation. The iterative process allowed us to develop an efficient estimation scheme in the presence of

non-Gaussian noise. Now we turn to a more general question: given an arbitrary collection of data how

might we find the pdf associated with them? What follows is a survey of methods for density estimation.

Such estimates are useful in the presentation and exploration of data: they can, for example, reveal skewness

in distributions, or the presence of multiple modes in the data, and may provide the basis for important

physical interpretations of the observations. Exploratory data analysis is discussed in Chapter 15 of Dekking

et al.

9.2. Comparing Data and Theory: Density Estimates and Sample Distribution Functions

Consider, for example, the data in Figure 9-1: the length of stable polarity intervals between reversals of the

geomagnetic field over the past 119 Myr a subset of the data first introduced in Figure 3 of Chapter 1. You

might reasonably ask why we should treat these intervals as being a kind of random variable; they are not,

as in the GPS case (Figure 2 of Chapter 1), repeated measurements of the “same thing”, with error added.

Our justification for treating the polarity intervals as a random variable is that the time between reversals is

highly variable and apparently unpredictable; a probabilistic description seems like the only way to capture

this behavior. The specific description often used is to take the lengths of polarity intervals as arising from

a Poisson process. As we saw in Chapter 3 the Poisson process describes a probabilistic behavior: in it, the

probability of a reversal within any given time interval is independent of how long it has been since the last
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Figure 9 -1: Histograms of stable polarity interval lengths for 0-119Ma from Cande and Kent (1995) timescale. Bin sizes
are 0.5 Myr (left) and 0.05 Myr (right). x-axis is truncated at 6 Myr, omitting the longest intervals.

reversal occurred. That is to say the timing of the next reversal cannot be determined a priori, although we

have some idea of the average reversal rate. Consequently, the length of each polarity interval is a random

variable, and likely to vary from one interval to the next. For the time being we ignore position in the reversal

sequence and just treat the lengths of polarity intervals as a collection of numbers. The histogram shows

no intervals shorter than .03 Myr, a concentration between 0 and about 1.5 Myr, and an occasional much

longer interval (one is actually 35 Myr long, but the histogram is truncated at 6 Myr for plotting purposes).

The histogram seems like a natural means for actually measuring the probability of observing a particular

interval length; (or range of lengths); we could compare a suitably normalized histogram with various

theoretical probability density functions. To use a histogram to estimate a pdf, take an origin x0 and a bin

width h and define the bins of the histogram as the intervals [x0 + mh, x0 + (m + 1)h] for positive and

negative integers m. The histogram estimate of the pdf is then defined by

Hn(x) = φ̂(x) =
1

nh
(number of xi in the same bin as x) (1)

where we are using φ̂ to denote an estimate of φ. Histograms have the advantage of being simple. The main

disadvantage is the discrete nature of the plot: the bin width is an intrinsic limit on resolution and the story

may change depending on how we select width and boundaries of the bins. We can imagine making the

answer more precise by decreasing the bin size, as in the right panel of Figure 9-1, but for a fixed number of

observations this will ultimately result in many bins with no observations in them; the limiting result would

be when one places a value at each observation and zeroes everywhere in between. It is not always easy to

decide on an appropriate level of smoothing.
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9.2:1 Choosing a Suitable Bin Size for Histograms

One way to choose the bin size for your histogram is to use the normal reference method. Suppose we

decide to choose a bin width that minimizes the difference between Hn(x) and the true pdf φ(x) using some

appropriate measure. Let’s use the mean integrated square error or MISE, defined as

MISE = E
[ ∫ ∞

−∞
[Hn(x)− φ(x)]2dx

]
(2)

For a smooth pdf φ and in lim n →∞ it can be shown that the value of h needed in (1) is

h = C(φ)n−1/3 (3)

where

C(φ) = 61/3
[ ∫ ∞

−∞
[φ′(x)]2dx

]−1/3

(4)

a result that clearly depends on the unknown pdf φ. We need to find C(φ) and the normal reference method

just supposes that we can try φ ∼ N (µ, σ2). This gives a simple data-based strategy for choosing the bin

width h.

Exercise: Show that for the normal reference method C(φ) = (24
√

π)1/3σ and hence verify that h =

24
√

π)1/3sn.

9.3. Alternatives to the Histogram

There are many alternatives to the histogram for making density estimates*. One of the simpler ones is

known as the naive estimator. It approximates the density function φ(x) for the random variable X , defined

as

φ(x) = lim
h→0

1
2h

p[x− h < X < x + h] (5)

by

φ̂(x) =
1

2nh

n∑
i=1

Π

(
x− xi

2h

)
=

1
n

n∑
i=1

1
h

w

(
x− xi

h

)
(6)

where Π is the rectangle or boxcar function. That is, the estimate is constructed by placing a box of height

(2nh)−1 and width 2h on each observation and summing all the boxes. Unlike the histogram, this eliminates

* B. W. Silverman (1986), Density Estimation for Statistics and Data Analysis, Chapman and Hall, is a very

good introduction, at an intermediate level.
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having to choose the box boundaries, but leaves freedom to control smoothness by the choice of h. The

naive estimator suffers from being discontinuous, with jumps at xi ± h and a derivative of zero everywhere

else. This difficulty can be overcome by replacing the weight function w(x) by a kernel function K(x)

with more agreeable properties. A kernel density estimate is given by

φ̂K(x) =
1

nh

n∑
i = 1

K

(
x− xi

h

)
(7)

with K(x) usually chosen as a symmetric probability density function satisfying the condition
∞
∫
−∞

K(x)dx = 1; K(x) = K(−x) (8)

Often K(x) is selected so that K(x) = 0 for |x| > 1. Common examples are

Epanechnikov kernel

K(x) =
3
4

(1− x2) − 1 ≤ x ≤ 1 (9)

Triweight kernel

K(x) =
35
32

(1− x2)3 − 1 ≤ x ≤ 1 (10)

Normal kernel

K(x) =
1√
2π

e−
1
2 x2 −∞ ≤ x ≤ ∞ (11)

There are obvious advantages to kernel estimates. It is clear from the definition that provided K(x) is a

density estimate, φ̂K(x) will have the necessary properties for a density function. From a visual perspective

the specific kernel used often seems to have only a very small impact on the resulting estimate, but it’s worth

remembering that φ̂K will inherit all the continuity and differentiability properties of K. The properties

of the kernel can be used in considering the mathematical properties of the kernel estimator (such as

bias, consistency, and efficiency). Figure 9-2(b) and (c) show two examples of kernel estimates for the

inter-reversal time density estimate constructed using a Gaussian density as K(x). You can see that again

the amount of structure is determined by the window width h, in this case the standard deviation of the

Gaussian. h is also known as the smoothing parameter or bandwidth. We shall encounter it again in

dealing with data smoothing in a more general context.

9.3:1 Choosing the bandwidth h for φ̂k(x)

Once again we can use the normal reference method in selecting the bandwidth h for kernel estimates.

Suppose we decide on a kernel K and want to minimize MISE between φ̂K,n(x) and the true pdf φ(x)

MISE = E
[ ∫ ∞

−∞
[φ̂K,n(x)− φ(x)]2dx

]
(12)
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Figure 9-2: Sample distribution function and various probability density estimates for the data of Figure

9-1. Top left histogram with h = 0.5, top right Gaussian kernel estimate with σ = 0.2, bottom right

Gaussian kernel estimate with σ = .02. Bottom left shows the sample distribution function (solid line),

compared with the best-fitting exponential distribution (dashed line).

For a smooth pdf φ and in lim n →∞ it can be shown that the value of h needed in (12) is

h = C1(φ)C2(K)n−1/5 (13)

where

C1(φ) =
[ ∫ ∞

−∞
[φ′′(x)]2dx

]−1/5

(14)
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and

C2(K) =

[ ∫∞
−∞[K(x)]2dx

]1/5

[ ∫∞
−∞[x2K(x)]2dx

]2/5 (15)

Again the result that depends on the unknown pdf φ and also on the kernel K. For a normal kernel

we get C2(K) = (2
√

π)−1/5 and for the normal reference method C1(φ) = (8
√

π/3)1/5σ, yielding h =

(4/3)1/5sn−1/5 = 1.06sn−1/5.

Although kernel estimates are the most widely used density estimates they do suffer from some drawbacks,

especially when applied to long-tailed distributions. As we see in Figure 9-2 the concentration of observations

has an intrinsic variability with the value of φ(x): the naturally low probability of acquiring data in regions

where φ is small results in a tendency for the density estimate to be noisy in the tails of the distribution.

This effect can be mitigated by broadening the kernel (increasing h), but only at the expense of potential

loss of resolution near the center of the distribution where the data are denser: the center of the distribution

may appear too broad, and one runs the risk of missing details such as multiple modes that could reflect

interesting physical properties inherent in the data.

Other considerations in using kernel estimates are that symmetry in the kernel might not always be desirable,

for example when the data are bounded on one side, e.g., always positive.

9.4. Sample Distribution Functions

Using any estimate of the probability density function as a comparison with parametric forms suffers from

the difficulty that we lose information by binning or averaging in constructing the density. The information

we actually have is just a sample of numbers Tn = x1, x2, . . . , xn drawn from a distribution, not an actual

function. If we want to compare our observations with some theoretical statistical model we can construct

a kind of empirical distribution function for our sample (after sorting in ascending order)

Sn(x) =
1
n

[number of xi ∈ Tn) < x] (16)

so that

Sn(x(i)) =
i

n
(17)

This is a kind of “staircase” function with a jump at each sample value of x. Recall from Chapter 6, page10,

that Sn is called the sample distribution function. Note that Sn has all the properties of a distribution

function. As n gets larger and larger the law of large numbers (on which all of probability theory is
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based) guarantees that Sn(x) → Φ(x), the underlying distribution for the observations. The advantage of

constructing Sn(x) is that it provides a single valued function that we can compare with any theoretical

distribution function, without having to choose bin sizes. We have already encountered Sn in the context

of hypothesis testing in Chapter 5. We can think of Sn(xi), i = 1, . . . , n, as a collection of observations

that need to be adequately described by any statistical model we wish to adopt. In other words we should

expect that Φ̂(xi) − Sn(xi) should be small in some sense, if Φ̂ is a good statistical model. This was the

basis of the Kolmogorov-Smirnov test - in which case the property we characterize as small is the maximum

absolute deviation between the two curves. The sample distribution function for the data set considered in

Figure 9-1 is given in Figure 9-2, also shown as the dashed line is the exponential distribution function, one

(rather bad) candidate for a parametric distribution that might describe these observations. But clearly the

fit of Sn(x) to Φ̂(x) is a criterion that might be used in selecting an appropriate estimate for φ̂(x) (assuming

that we can evaluate Φ̂(x) directly by integrating φ̂(x)).

9.5. Adaptive Estimation: Nearest Neighbors and Variable Kernels

Data adaptive methods of density estimation have been developed in an attempt to address the problem

outlined above. The resolution attainable depends on the number of observations available and this will not

in general be uniform across the domain of φ(x). The general idea is to adapt the amount of smoothing in

the estimate to the local density of data. Two methods are introduced here, known as the nearest neighbors

and variable kernel techniques.

9.5:1 Nearest Neighbor Method

The basic idea of the nearest neighbor method is to control the degree of smoothing in the density estimate

based on the size of a box required to contain a given number of observations (contrast this with the naive

estimator which uses the number of observations falling in a box of fixed width centered at the point of

interest). The size of this box is controlled using an integer k, that is considerably smaller than the sample

size, a typical choice would be k ≈ n
1
2 . Suppose we have the ordered data sample x(1), x(2), . . . , x(n). For

any point x on the line we define the distance betwen x and the points on the sample by

di(x) = |xi − x|

so that

d1(x) ≤ d2(x) ≤ d3(x) . . . dn(x) (18)
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Then we define the kth nearest neighbor density estimate by

φ̂(x) =
(k − 1)
2ndk(x)

(19)

This can be understood in terms of the number of observations one would expect in an interval [x− r, x + r]

with r > 0. We expect this to be about 2rnφ(x). By definition we expect (k − 1) observations in

[x− dk(x), x + dk(x)], so we can estimate the density by noting that

k − 1 = 2dk(x)nφ̂(x) (20)

from which (18) can be recovered. Near the center of the distribution dk(x) will be smaller than in the

tails, so we can expect the problem of undersmoothing in the tails to be reduced. Like its relative, the naive

estimator, the nearest neighbor estimator is not smooth: dk(x) has a discontinuity in its derivative at every

point xi. Furthermore, although φ̂(x) is positive and continuous everywhere it is not in fact a probability

density. Outside [x(1), x(n)] we get dk(x) = x(k) − x and dk(x) = x− x(n−k+1) which make the tails of the φ̂

defined in (19) fall off like x−1, that is extremely slowly: the integral of φ̂(x) is infinite.

This can in principle be fixed by using a generalized kth nearest neighbor estimate

φ̂(x) =
1

ndk(x)

n∑
i=1

K
(x− xi

dk(x)
)

(21).

In fact this is just a kernel estimate evaluated at x with window width dk(t). Overall smoothing is controlled

by choice of k, with the window width at any specific point depending on the density of points surrounding it.

Note, however, that the derivative of the generalized nearest neighbor estimate (GNNE) will be discontinuous

at all points where dk(x) has a discontinuous derivative. In general the integrability, and behavior in the

distribution tails will depend on the form of K.

9.5:2 Variable Kernel Method

The variable kernel estimate is constructed in a similar fashion to the classical kernel estimate, but the scale

parameter for the bumps at each datum can vary from one data point to another. Once again we suppose

that k is a positive integer, and K(x) a kernel function. Define dj,k as the distance from the point xj to the

kth nearest point in the data set. The variable kernel estimate with smoothing parameter h is defined as

φ̂(x) =
1
n

n∑
j = 1

1
hdj,k

K

(
x− xj

hdj,k

)
(22)
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The role of dj,k is to make the kernels flatter in regions where data are sparse. For a fixed k the overall

degree of smoothing depends on the parameter h. The responsiveness of the window width choice to local

smoothing is determined by the choice of k. Unlike the GNNE estimate of (21) the window width does

not depend on the distance from x to the data points, but depends only on the distance between data points.

Also unlike the GNNE, provided that K is a pdf the kernel estimate will be too.

9.6. Maximum Penalized Likelihood Estimators

The methods of density estimation described are basically empirical techniques based on the definition of a

pdf. What would happen if we applied the standard estimation techniques like MLE? Following the standard

approach we could write:

L(φ|x1, x2, . . . , xn) =
n∏

i=1

φ(xi) (23)

There is no finite maximum for l = log L over the class of density functions. The likelihood can be made

arbitrarily large by taking densities that approach the sum of delta functions located at the observations. To

see that this is true, consider the naive density estimate in the limit as h → 0.

If one wants to use a maximum likelihood kind of approach to the problem it is necessary to place restrictions

on the kinds of densities over which the likelihood is to be maximized. One possibility involves incorporating

into the likelihood a term including roughness of the curve. Suppose we define roughness R(φ) as

R(φ) =
∫ ∞

−∞
(φ′′)2

and a penalized log likelihood by

lα(φ) =
n∑

i=1

log φ(xi)− αR(φ) (24)

where α is a positive smoothing parameter. We won’t go into the details here, but it is possible to find

the maximum penalized likelihood density estimate as defined by (24) over the class of functions φ that

satisfy
∫∞
−∞ φ = 1 , φ(x) ≥ 0 for all x and R(φ) < ∞. The parameter α controls the tradeoff between

smoothness and goodness of fit to the data. Small α generates a rough maximum penalized likelihood

estimator. Silverman (1986) discusses this and some other approaches to non-parametric density estimation

that we will not treat.
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9.6:1 Bounded Domains

We conclude this section by noting that it is often necessary to give special consideration to the domain of

definition for a density function: e.g., what to do when it is always positive, or bounded on both sides. One

needs to ensure that φ(x) is zero outside the domain of x. Again see Silverman for some basic strategies.
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