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Gaussian statistics for palaeomagnetic vectors
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S U M M A R Y
With the aim of treating the statistics of palaeomagnetic directions and intensities jointly and
consistently, we represent the mean and the variance of palaeomagnetic vectors, at a particular
site and of a particular polarity, by a probability density function in a Cartesian three-space
of orthogonal magnetic-field components consisting of a single (unimodal) non-zero mean,
spherically-symmetrical (isotropic) Gaussian function. For palaeomagnetic data of mixed po-
larities, we consider a bimodal distribution consisting of a pair of such symmetrical Gaussian
functions, with equal, but opposite, means and equal variances. For both the Gaussian and
bi-Gaussian distributions, and in the spherical three-space of intensity, inclination, and dec-
lination, we obtain analytical expressions for the marginal density functions, the cumulative
distributions, and the expected values and variances for each spherical coordinate (including
the angle with respect to the axis of symmetry of the distributions). The mathematical expres-
sions for the intensity and off-axis angle are closed-form and especially manageable, with the
intensity distribution being Rayleigh–Rician. In the limit of small relative vectorial dispersion,
the Gaussian (bi-Gaussian) directional distribution approaches a Fisher (Bingham) distribution
and the intensity distribution approaches a normal distribution. In the opposite limit of large
relative vectorial dispersion, the directional distributions approach a spherically-uniform dis-
tribution and the intensity distribution approaches a Maxwell distribution. We quantify biases
in estimating the properties of the vector field resulting from the use of simple arithmetic av-
erages, such as estimates of the intensity or the inclination of the mean vector, or the variances
of these quantities. With the statistical framework developed here and using the maximum-
likelihood method, which gives unbiased estimates in the limit of large data numbers, we
demonstrate how to formulate the inverse problem, and how to estimate the mean and variance
of the magnetic vector field, even when the data consist of mixed combinations of directions
and intensities. We examine palaeomagnetic secular-variation data from Hawaii and Réunion,
and although these two sites are on almost opposite latitudes, we find significant differences in
the mean vector and differences in the local vectorial variances, with the Hawaiian data being
particularly anisotropic. These observations are inconsistent with a description of the mean
field as being a simple geocentric axial dipole and with secular variation being statistically
symmetrical with respect to reflection through the equatorial plane. Finally, our analysis of
palaeomagnetic acquisition data from the 1960 Kilauea flow in Hawaii and the Holocene Xitle
flow in Mexico, is consistent with the widely held suspicion that directional data are more
accurate than intensity data.

Key words: Earth’s magnetic field, geomagnetic variation, geomagnetism, palaeointensity,
palaeomagnetism, statistical methods.

1 I N T R O D U C T I O N

As the result of complex dynamic processes operating in the Earth’s
core (Busse 1983; Roberts 1992), the geomagnetic field exhibits
a wide range of temporal variation: from reversals and excur-
sions to inter-transitional secular variation (Bloxham et al. 1989;

Merrill & McFadden 1990; Courtillot & Valet 1995). Palaeomag-
netic data record this time-dependency over geological and long,
historical timescales, by virtue of the magnetization acquired by
lava flows, sedimentary rocks, and archaeological artefacts. Ideally,
for time-series analyses, palaeomagnetic data would be distributed
both regularly in time and with sufficient temporal density so as
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to avoid aliasing. But because volcanic eruptions occur sporadi-
cally over time, because sedimentation rates are non-uniform in
time, and because archaeological artefacts can come from differ-
ent historical periods of time, palaeomagnetic data are often anal-
ysed statistically. Of course, the Earth’s magnetic field is vectorial:
it has both intensity and direction. Therefore, and again ideally, all
palaeomagnetic data would consist of intensity and directional mea-
surements of temporally coincident acquisitions. But because they
come from rocks and archaeological artefacts with different physi-
cal and chemical properties, and because these materials are formed
and subsequently sampled in different ways, palaeomagnetic data
from a given site usually consist of only parts of the full 3-D mag-
netic vector (Butler 1992; Tauxe 1998). If intensity measurements
are unavailable, records from fully oriented samples consist of only
inclinations and declinations; if samples come from azimuthally-
unoriented borecores then declinations are unavailable; if samples
are completely unoriented then the data consist of only intensities.
Given these mixtures of intensity and directional data groups, it is
desirable to characterize the mean and variance of the full magnetic
vector field by comparing it to a single, simple probability density
function. Yet, the statistical development of a convenient density
function for doing just that has been lacking.

For a geomagnetic field of a given polarity, it is common to char-
acterize the variance of palaeomagnetic directions using a Fisher
(1953) distribution, and for a bimodal distribution of directions
coming from both reverse and normal polarities, the variance is
commonly characterized by a Bingham (1964) distribution. What is
unsatisfactory is that neither of these directional distributions have
any demonstrated relationship with the distributions often used to
describe intensity data, such as the normal, log-normal and gamma
distributions. Directional and intensity data are usually treated sep-
arately, despite the fact that the two data types represent samplings
from the very same geomagnetic field. In an effort to address this
shortcoming, here we build on the statistical analyses of our pre-
decessors. Instead of treating intensities and directions separately,
we treat them jointly, and therefore consistently. This requires the
development of a different and more general statistical distribution.

To represent the full-vectorial nature of the palaeomagnetic field
at a particular geographic location and of a particular polarity, we
consider a unimodal statistical distribution in a Cartesian three-
space of orthogonal magnetic-field components consisting of a
single Gaussian function with a spherically-symmetrical, isotropic
variance. To represent a palaeomagnetic vector field of mixed re-
verse and normal polarities, we consider a bimodal statistical dis-
tribution consisting of two symmetrical Gaussian functions having
equal, but opposite, means and isotropic variances, something we
call a bi-Gaussian distribution. The projection of the unimodal, 3-D
Gaussian distribution onto the unit sphere, a marginalization ob-
tained by integrating over all intensities, is the angular-Gaussian
distribution, which has been given in series form by Bingham (1983),
and which has been revisited recently by Khokhlov et al. (2001) in
their analysis of palaeosecular directional variation. In the context
of palaeosecular vectorial variation, the 3-D Gaussian distributions
considered here are related, at least mathematically, to the statistical
models of Constable & Parker (1988), Hulot & LeMouël (1994),
Kono (1997), and others, where spherical-harmonic coefficients de-
scribing global geomagnetic secular variation are regarded as in-
dependent statistical samples from a giant-Gaussian process. With
such a global model, the palaeosecular variation at a particular ge-
ographic site can be described by a forward calculation. However,
relating local secular variation to a global model is a difficult inverse
problem. Indeed, Gaussian statistics at a single site need not neces-

sarily arise from a global giant-Gaussian process; such an inference,
if it is even appropriate, would require data from many sites. In con-
trast to such global studies, our concern here is much more local.
3-D Gaussian statistics can be used for studying local palaeosecular
variation, with vector data representing a variety of acquisition times
and taken from multiple rock depositions and archaeological arte-
facts. Alternatively, 3-D Gaussian statistics can be used for studying
the palaeomagnetic acquisition process itself, with vector data rep-
resenting a single acquisition time taken from multiple samples of
a single rock deposition or a single archaeological artefact.

In this paper we develop a site-local, vectorial statistical theory.
We explore the properties of the Gaussian and bi-Gaussian distri-
butions for the palaeomagnetically-relevant spherical three-space
of intensity, inclination, and declination. After performing the ap-
propriate marginalizations of the 3-D Gaussian distributions, we
demonstrate how to estimate the mean and variance of the magnetic
vector field via the maximum-likelihood method, even when the
data consist of different mixtures of directions and intensities. In his
original paper, Fisher (1953) examined palaeomagnetic data from
multiple lava flows, calculating the inter-flow directional dispersion
arising from palaeosecular variation, and he examined data from
a single lava flow, calculating the intra-flow directional dispersion
arising from differences in the palaeomagnetic acquisition process.
Following on from Fisher’s work, and using the framework of the
3-D Gaussian distributions developed here, we examine palaeosec-
ular vectorial variation over the past 5 Ma, and separately during
the normal Brunhes chron, as recorded by inter-flow directional and
intensity data taken from Hawaiian and Réunion basalts. We also
examine the reliability of palaeomagnetic acquisition by analyzing
intra-flow directional and intensity data taken from particular recent
lava flows in Mexico and Hawaii.

2 T H E D I S T R I B U T I O N S

The geomagnetic field B is a function of both space and time.
Our concern here, however, is with the description of the field at
a fixed geographic location. We represent a palaeomagnetic vector
at a given location by the symbol x. In our statistical analysis of the
3-D palaeomagnetic data, each vector x is conceived as a realization
in probability from a statistical distribution of vectors. In Cartesian
coordinates (X , Y , Z), the probability P(x) that x lies within the
infinitesimal differential volume

d3x = d XdY d Z (1)

is

P(x) =
∫

p(x) d3x, (2)

where p(x) is the density function

p(x) = d3

dx3
P(x). (3)

Of course, the density function is normalized so that upon integration
over all space∫ +∞

−∞
p(x) d3x = 1. (4)

In the usual way, the expected value E of some function f (x) is the
average of all possible values, with proper regard to the probability
of their occurrence,
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E ( f (x)) =
∫ +∞

−∞
f (x)p(x) d3x. (5)

2.1 Unimodal Gaussian distribution

We define the unimodal Gaussian probability density function in
terms of a mean palaeomagnetic vector xµ and an associated covari-
ance matrix C,

pg1

(
x | xµ,C

) = 1

(2π )
3
2 |C | 1

2

exp

[
−1

2
(x − xµ)T C−1(x − xµ)

]
.

(6)

For the discussion that follows, we shall consider the more restricted
case of isotropic variance,

C = σ 2I = σ 2




1 0 0

0 1 0

0 0 1


 . (7)

We then have a spherically-symmetrical Gaussian probability den-
sity function, where the Cartesian vectorial components have equal
scalar variances and where each component is presumed to be in-
dependently distributed. As we shall see, this isotropic Gaussian
distribution is something of an idealization, since it does not fit all
palaeovector data sets. We have chosen to develop the isotropic case
because it is simpler than the more general anisotropic case, but de-
spite this, the mathematics that follows is, at times, still rather com-
plicated and messy. We assert that even if it does not fit palaeovector
data perfectly, the Gaussian distribution with isotropic variance is
useful for purposes of comparison. Henceforth, unless the terminol-
ogy is otherwise unambiguous, we shall refer to the scalar σ 2 as the
‘vectorial variance’, and to the scalar σ as the ‘vectorial dispersion’.

Illustrated in Fig. 1(a), the Gaussian probability density function
is

pg1

(
x | xµ, σ 2

) = pg1

(
X, Y, Z | Xµ, Yµ, Zµ, σ 2

)
. (8)

In terms of spherical coordinates, namely intensity, inclination, and
declination (F, I , D), for which the differential volume element is
transformed according to

d XdY d Z → F2 cos I d Fd I d D, (9)

the probability density function is

pg1

(
x | xµ, σ 2

) = pg1

(
F, I, D | Fµ, Iµ, Dµ, σ 2

)
= F2 cos I q(x | xµ, σ 2), (10)

where

q
(
x | xµ, σ 2

) = 1

(2π )
3
2 σ 3

× exp

[
− 1

2σ 2
(F cos I cos D − Fµ cos Iµ cos Dµ)2

]

× exp

[
− 1

2σ 2
(F cos I sin D − Fµ cos Iµ sin Dµ)2

]

× exp

[
− 1

2σ 2
(F sin I − Fµ sin Iµ)2

]
. (11)

The Euclidean length of the mean vector xµ is Fµ. The direction
of the mean vector is defined by its inclination and declination, I µ

and Dµ. Because we are considering a distribution with isotropic

Figure 1. The geometry of the (a) Gaussian and (b) bi-Gaussian distribu-
tions. In the usual way (X , Y , Z) define the (north, east, down) magnetic-field
components; (F, I , D) are the (intensity, inclination, declination), H is the
horizontal component of the field.

variance, eq. (7), the probability density function is rotationally sym-
metrical about the mean vector xµ. With θ defining the off-axis angle
between a particular unit magnetic vector and the mean unit vector,

x̂ = x

|x| and x̂µ = xµ

|xµ| , (12)

then

cos θ = x̂ · x̂µ. (13)

In summary, the unimodal Gaussian distribution is characterized
by a mean magnetic-field vector, represented by xµ, together with a
dispersion of vectors, with isotropic variance σ 2, about the endpoint
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of the mean vector. We shall refer to the scalar (σ/Fµ)2 as the
‘relative vectorial variance’, and to the scalar σ/Fµ as the ‘relative
vectorial dispersion’.

2.2 Bimodal bi-Gaussian distribution

A simple, although perhaps not sufficiently appreciated, fact is that
the sign of the magnetic field B is irrelevant to the physical pro-
cesses operating in the Earth’s core (Roberts & Soward 1972).
The equations of magnetohydrodynamics are invariant under the
transformation

B → −B. (14)

This means that the statistics of numerous and perfect palaeomag-
netic data characterizing the field of one polarity could just as eas-
ily characterize the field of the opposite polarity (Merrill et al.
1979; Gubbins & Zhang 1993). Indeed, the successful application of
palaeomagnetism to plate-tectonic reconstructions, which hypothe-
sizes the statistical dominance of the geocentric axial dipole, indi-
cates, if only in a basic sense, that normal and reverse polarity fields
have some similarity. In light of these observations, for studies of
the palaeomagnetic field we are motivated to develop a statistical
framework that is independent of the sign of the field.

As with the unimodal Gaussian distribution, for the bimodal
bi-Gaussian distribution we shall consider the restricted case of
isotropic variance. Illustrated in Fig. 1(b), in Cartesian coordinates
the bi-Gaussian probability density function is

pg2

(
x | xµ, σ 2

) = pg2

(
X, Y, Z | Xµ, Yµ, Zµ, σ 2

)
= 1

2

[
pg1

(
x | xµ, σ 2

) + pg1

(
x| − xµ, σ 2

)]
, (15)

and in spherical coordinates it is

pg2

(
x | xµ, σ 2

) = pg2

(
F, I, D | Fµ, Iµ, Dµ, σ 2

)
= 1

2
F2 cos I

[
q

(
x | xµ, σ 2

) + q
(
x| − xµ, σ 2

)]
. (16)

Note that pg2
is invariant under the transformations

(Fµ, Iµ, Dµ) → (±Fµ, −Iµ + 2mπ, Dµ + (2n + 1)π ), (17)

(Fµ, Iµ, Dµ) → (±Fµ, Iµ + 2mπ, Dµ + 2nπ ), (18)

where m and n are integers, although, obviously, negative intensities
or inclinations greater than π/2 (or less than −π/2) do not corre-
spond to conventional definitions and can therefore be considered
to be mathematical artefacts. In summary, then, the bi-Gaussian
distribution is characterized by a mean axis-segment, represented
by the vectorial pair ±xµ, together with a dispersion of vectors,
with isotropic variance σ 2, about the endpoints of the mean axis-
segment.

3 M A R G I N A L A N D
C U M U L A T I V E FO R M S

As we have said, ideally, palaeomagnetic data consist of coincident
intensity and directional measurements. In such circumstances, the
unimodal Gaussian distribution, represented by (10), and the bi-
modal bi-Gaussian distribution, represented by (16), are useful for
statistical analyses. However, in practice, palaeomagnetic data usu-
ally consist of only parts of the full magnetic vector, in which case
we need the appropriately marginalized probability density func-
tions corresponding to the Gaussian distributions. So, for exam-
ple, for the vast majority of palaeomagnetic data, where only direc-
tional measurements are taken from fully oriented samples, namely

inclination–declination pairs with no associated absolute palaeoin-
tensity (other than a magnetization), we need the joint probability
density function for inclination and declination. This density func-
tion is obtained by integrating (10), for the Gaussian case, and (16)
for the bi-Gaussian case, over all intensities,

pg

(
I, D | Iµ, Dµ, (σ/Fµ)2

) =
∫ ∞

0
pg (F, I, D) d F. (19)

Likewise, given intensity-inclination data taken, for example, from
an azimuthally-unoriented borecore, we need the marginal density
function

pg

(
F, I | Fµ, Iµ, σ 2

) =
∫ 2π

0
pg (F, I, D) d D. (20)

If only inclinations are available then we need the marginal density
function

pg

(
I | Iµ, (σ/Fµ)2

) =
∫ 2π

0

∫ ∞

0
pg (F, I, D) d Fd D, (21)

and so on. In each case, integration is performed over the vectorial
components that are either not available or not needed. The required
integrations are rather involved, and they are therefore given in the
appendices.

When assessing statistical significance with (say) a Kolmogorov–
Smirnov test, cumulative probability distributions are needed. So,
for example, the cumulative inclination distribution, giving the prob-
ability that an inclination lies on the interval [− π/2, I ], is just

Pg

(
I | Iµ, (σ/Fµ)2

) =
∫ I

− π
2

pg

(
I ′) d I ′. (22)

As with the marginal distributions, the required integrations for the
cumulative distributions are rather involved, and they are, there-
fore, also given in the appendices. Computer routines for the
Kolmogorov–Smirnov significance test can be found in Press et al.
(1992).

Depending on the available data, combinations of the marginal
distributions can be used for estimating the underlying vectorial
mean and variance, preferably by maximizing their likelihood as we
discuss in Section 5. Examples of the intensity, inclination, decli-
nation, and off-axis anglular distributions, are given in Figs 2 and
3 (Figs 4 and 5) corresponding to the 3-D Gaussian (bi-Gaussian)
distribution. Amongst all the marginalizations, perhaps the most en-
lightening, and, it turns out, the most mathematically tractable, are
those corresponding to the separate forms for intensity and off-axis
angle. It is on these that we now concentrate our discussion.

3.1 Intensity

The intensity probability density function for the 3-D Gaussian dis-
tributions is obtained by integrating either (10) or (16) over all an-
gles, in either case the results are identical,

pg

(
F | Fµ, σ 2

) =
∫ 2π

0

∫ + π
2

− π
2

pg (F, I, D) d I d D

= σ−1

(
2

π

) 1
2
(

F

Fµ

)
exp

[
− 1

2

(
F

σ

)2

− 1

2

(
Fµ

σ

)2
]

× sinh

[
F Fµ

σ 2

]
. (23)
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Figure 2. Examples, with different absolute and relative vectorial dispersions, of the marginal probability density functions pg1
and corresponding cumulative

distributions Pg1
for our Gaussian distribution, eq. (10). (a, b) Intensity F, with vectorial-mean intensity Fµ, and with vectorial dispersions σ of 7.5, 15, 30,

and 60 µT shown respectively by solid, long-dashed, short-dashed, and dotted lines. (c, d) Inclination I , (e, f) declination D, and (g, h) off-axis angle θ with
vectorial-mean direction (I µ, Dµ) = (45◦, 0◦), and with relative vectorial dispersions of 0.25, 0.5, 1, 2 shown respectively by solid, long-dashed, short-dashed
and dotted lines. Note that with increasing dispersion the intensity and inclination distributions become increasingly asymmetrical, or skewed, about their
means, whilst the declination remains symmetrical about its mean.
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Figure 3. Examples, with different mean inclinations, of the marginal probability density functions pg1
and corresponding cumulative distributions Pg1

for
(a, b) intensity F, (c, d) inclination I , (e, f) declination D, and (g, h) off-axis angle θ for our Gaussian distribution. For vectorial-mean values of (Fµ, Dµ, σ )
= (30 µT , 0◦, 7.5 µT ) the solid, long-dashed, short-dashed, and dotted lines are for vectorial-mean inclinations I µ of 0◦, 30◦, 60◦, and 90◦ respectively. Note
that changing the vectorial-mean inclination has no affect on the intensity and off-axis angular distributions. Compare with Figs 5 and 11 of Constable & Parker
(1988).
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Figure 4. Same as Fig. 2, except for the bi-Gaussian distribution, eq. (16).
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Figure 5. Same as Fig. 3, except for the bi-Gaussian distribution, eq. (16).
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The integration is discussed in Appendix D. Like the (off-axis) di-
rectional density functions, eqs (27) and (28) given below, eq. (23)
is amongst the central mathematical results of this analysis. The
limiting forms of this function are discussed in Section 4.

For reference, eq. (23) is a special case of the n-dimensional
generalized Rayleigh–Rician density function (Miller et al. 1958),

(
Fµ

σ 2

)(
F

Fµ

) 1
2 n

exp

[
−1

2

(
F

σ

)2

− 1

2

(
Fµ

σ

)2
]

I 1
2 (n−2)

[
F Fµ

σ 2

]
,

(24)

where I ν is a modified Bessel function of the first kind; for reference
see Abramowitz & Stegun (1965) or Spanier & Oldham (1987). The
Rayleigh–Rician distribution has application to digital communica-
tions and the detection of targets amidst Gaussian clutter (DiFranco
& Rubin 1968; McDonough & Whalen 1995; Proakis 1995); for
a comprehensive mathematical discussion of the Rayleigh–Rician
distribution see Miller (1975). For the 3-D (n = 3) case considered
here, (24) reduces to (23) after use of the identity

I 1
2
(z) =

(
2

π z

) 1
2

sinh(z), (25)

see 10.2.13 of Abramowitz & Stegun (1965) or 28:13:3 of Spanier
& Oldham (1987).

Since the intensity distribution for the unimodal Gaussian distri-
bution is identical to that for the bi-Gaussian distribution, the corre-
sponding cumulative distributions are also identical. The probability
that an intensity lies on the interval [0, F] is just

Pg

(
F | Fµ, σ 2

) =
∫ F

0
pg(F ′) d F ′, (26)

where the integration is given in Appendix D.

3.2 Off-axis angle

For the unimodal Gaussian distribution, the marginal density func-
tion for off-axis angle is

pg1

(
θ | (σ/Fµ

)2) = 1

2
sin θ exp

[
− 1

2

(
Fµ

σ

)2
]

×
{[

1 +
(

Fµ

σ

)2

cos2 θ

]
exp

[
1

2

(
Fµ

σ

)2

cos2 θ

]

×
[

1 + erf

[
1√
2

(
Fµ

σ

)
cos θ

]]
+

(
2

π

) 1
2
(

Fµ

σ

)
cos θ

}
, (27)

which is what Bingham (1983) obtained in series form and called
the ‘angular-Gaussian’ distribution, and which has been expressed
in a more general anisotropic form by Khokhlov et al. (2001) . For
the bimodal bi-Gaussian distribution, the marginal density function
for off-axis angle is simpler, being just

pg2

(
θ | (σ/Fµ)2

) = 1

2
sin θ exp

[
−1

2

(
Fµ

σ

)2

sin2 θ

]

×
[

1 +
(

Fµ

σ

)2

cos2 θ

]
. (28)

The integrations for both the Gaussian and bi-Gaussian cases are
discussed in Appendix E. Eq. (27) is the Gaussian analogue of the

Fisher directional distribution, and eq. (28) is the bi-Gaussian ana-
logue of the Bingham directional distribution. The limiting forms
of these functions are discussed in Section 4 below.

For the directional probability density functions (27) and (28),
the corresponding cumulative distributions, giving the probability
that an off-axis angle lies on the interval [0, θ ], are just

Pg

(
θ | (σ/Fµ)2

) =
∫ θ

0
pg

(
θ ′) dθ ′, (29)

where the integrations are given in Appendix E. These cumulative
distributions are analogous to those for the Fisher distribution, stud-
ied by Watson & Irving (1957) and later by McFadden (1980).

4 L I M I T I N G P R O P E R T I E S

It is instructive to compare the marginal density functions corre-
sponding to the 3-D Gaussian distributions with the separate and, at
least so far, theoretically unrelated intensity and directional density
functions used more commonly by the palaeomagnetic community.

4.1 Intensity: Normal to Maxwell

First, we consider the intensity (Rayleigh–Rician) density function
(23) corresponding to our 3-D Gaussian distributions. For the case
where the vectorial dispersion is substantially less than the inten-
sity of the mean vector, σ � Fµ, the intensity probability density
function is approximately that for a 1-D normal distribution,

pn

(
F | Fµ, σ 2

) = 1√
2πσ

exp

[
−1

2

(
F − Fµ

σ

)2
]

, (30)

which McFadden & McElhinny (1982), amongst others, have sug-
gested on empirical grounds might be appropriate for palaeointen-
sity studies, after truncation of negative intensities. Eq. (30) is, of
course, neither log-normal nor gamma, distributions which have
been, respectively, suggested might be appropriate for intensity stud-
ies by Tanaka et al. (1995a) and Constable et al. (1998). Indeed,
the fact that a 1-D normal distribution is a limiting case of the 3-D
Gaussian (and bi-Gaussian) intensity distribution lends some (small)
justification to the use of the 1-D normal distribution for intensity
studies. However, if transitional data are included in an analysis, the
condition σ � Fµ might not be accurately met, in which case (23)
should be used for modelling intensity data. Moreover, as we shall
see in our discussion of bias, Section 5, the 1-D normal distribution
cannot always be used to give accurate estimates of 3-D vectorial
quantities. For a graphical demonstration that a normal distribution
is an accurate approximation of the Gaussian intensity distribution
(Rayleigh–Rician), when σ � Fµ, see Figs 6(a) and (b).

If we consider the other limiting case where the vectorial disper-
sion is substantially greater than the intensity of the mean vector,
σ � Fµ, the intensity probability density function (23) is approxi-
mately that for a Maxwell distribution,

pm

(
F | σ 2

) = σ−1

(
2

π

) 1
2
(

F

σ

)2

exp

[
−1

2

(
F

σ

)2
]

. (31)

This distribution often arises in statistical mechanics, being used to
describe the speed of gas molecules in thermal equilibrium; for ref-
erence see Kittel & Kroemer (1980) or Landau & Lifshitz (1980).
The Maxwell distribution is itself a special case (n = 3, Fµ = 0) of
the generalized Rayleigh–Rician distribution (24). For a graphical
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Figure 6. Examples, with different relative vectorial dispersions σ/Fµ of the marginal intensity probability density function pg(F) and corresponding
cumulative distributions Pg(F) for our Gaussian distribution (G). Also shown with dashed lines normal (N), eq. (30), and with dotted lines Maxwell (M),
eq. (31), density functions and distributions. In (a, b) we see that in the limit σ/Fµ → 0, the bi-Gaussian intensity distribution approaches a normal distribution;
whilst in (g, h) we see that in the opposite limit σ/Fµ → ∞, the bi-Gaussian intensity distribution approaches a Maxwell distribution. For fixity, in each case
the product σ Fµ is equal to 225 (µT )2.
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demonstration that a Maxwell distribution is an accurate approxima-
tion of the Gaussian intensity distribution (Rayleigh–Rician), when
σ � Fµ, see Figs 6(g) and (h).

4.2 Gaussian off-axis angles: Fisher to uniform

Next, we consider the off-axis angular probability density function
(27) corresponding to our unimodal 3-D Gaussian distribution. For
the case where the relative vectorial dispersion is substantially less
than one, σ/Fµ � 1, the off-axis angular density function is ap-
proximately that for a Fisher (1953) distribution,

p f

(
θ | (Fµ/σ )2

) = 1

2

(
Fµ

σ

)2
{

sinh

[(
Fµ

σ

)2
]}−1

× sin θ exp

[(
Fµ

σ

)2

cos θ

]
, (32)

this being the unimodal directional distribution often used by the
palaeomagnetic community; for reference see Mardia (1972) or
Fisher et al. (1987). Some justification for the use of a Fisher distri-
bution is lent by the fact that it is very nearly equal to the projection
of the Gaussian distribution onto the unit sphere. However, the con-
dition σ/Fµ � 1 might not always be accurately met, in which
case (27) should be used for modelling directional data of a given
polarity. For a graphical demonstration that the Fisher distribution
is an accurate approximation of the Gaussian off-axis angular dis-
tribution, when σ/Fµ � 1, see Figs 7(a) and (b).

For the other limiting case where the relative vectorial disper-
sion is substantially greater than one, σ/Fµ � 1, the off-axis an-
gular probability density function (27) is approximately that for a
spherically-uniform distribution of directions,

pu(θ ) = 1

2
sin θ. (33)

Similar observations apply to the bi-Gaussian distribution, as dis-
cussed below. For a graphical demonstration that the spherically-
uniform directional distribution is an accurate approximation of
the Gaussian off-axis angular distribution, when σ/Fµ � 1, see
Figs 7(g) and (h). We also note that in this limit the Fisher distribu-
tion is itself well approximated by a spherically-uniform directional
distribution.

4.3 Bi-Gaussian off-axis angles: Bingham to uniform

Finally, we consider the off-axis angular probability density func-
tion (28) corresponding to our 3-D bi-Gaussian distribution. For
the case where the relative vectorial dispersion is substantially less
than one, σ/Fµ � 1, the off-axis angular density function is ap-
proximately that for a Bingham (1964) distribution, also sometimes
called a Watson (1965) distribution,

pb

(
θ | (Fµ/σ )2

) = 1

2

{
1 F1

[
1
2
3
2

;
1

2

(
Fµ

σ

)2
]}−1

× sin θ exp

[
1

2

(
Fµ

σ

)2

cos2 θ

]
, (34)

this being the bimodal directional distribution often used by the
palaeomagnetic community. The hypergeometric function 1 F1 is

part of the normalizing constant and is given by (A7). For a graph-
ical demonstration that the Bingham distribution is an accurate ap-
proximation of the bi-Gaussian off-axis angular distribution, when
σ/Fµ � 1, see Figs 8(a) and (b).

Following from our discussion for the unimodal Gaussian dis-
tribution, if we consider the other case where the relative vectorial
dispersion is substantially greater than one, σ/Fµ � 1, the off-axis
angular probability density function (28) describes a spherically-
uniform distribution of directions, eq. (33); see Figs 8(g) and (h).

5 A N A L Y S I S O F D A T A

In the analysis of palaeomagnetic data, mean vectorial components
are usually estimated in one of two ways, either using an arithmetic
average (or some variant thereof), or using maximum-likelihood es-
timation. Arithmetic averages have the advantage of being simple
to perform, but unless full-vector data are available, simple aver-
ages of non-Cartesian components, and even unit vectors, can give
biased estimates of the true mean vector-field. This is true inde-
pendent of the number of data used. On the other hand, although
maximum-likelihood estimates are slightly more difficult to obtain,
it is well known that their biases disappear with increasingly nu-
merous data, a property sometimes described as ‘consistency in
probability’ (Cramér 1945; Stuart et al. 1999); the only proviso is
that the probability density functions being used in the maximum-
likelihood estimation must be appropriate to the problem at hand
and capable of fitting the data to within some tolerable misfit.

5.1 Averaging full vectors

If full-vector data (intensity, inclination, declination) are available,
the simplest method for calculating the mean vector is to convert to
Cartesian components, and then perform a vectorial average. The
expected value for the X component is just

E(X ) =
∫ +∞

−∞
p (X ) Xd X, (35)

which, as is well known from vectorial algebra, is an unbiased esti-
mate of the mean component Xµ, even if the underlying 3-D prob-
ability density function p(x) is anisotropic. Similar statements can
be made for the expected values of the other components, E(Y ) and
E(Z). Therefore, with full-vector data,

E(x) = xµ, (36)

which is exactly the result needed.

5.2 Averaging unit vectors

If only directional data (inclination, declination) are available, the
usual method for calculating the mean direction is to convert to
Cartesian components, and then perform a simple vectorial average
of unit vectors. However, Creer (1983) has noted that this does not
always yield a mean direction consistent with that obtained using
full vector data. In effect Creer found that, depending on the nature
of the secular variation, it often is the case that

E(x̂)/|E(x̂)| �= E(x)/|E(x)|, (37)

an inequality that Khokhlov et al. (2001) have recently noted can
arise from an anisotropic variance of vectors about the mean vector.
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Figure 7. Examples, with different relative vectorial dispersions σ/Fµ of the marginal off-axis angular probability density function pg1
(θ ) and corresponding

cumulative distributions Pg1
(θ ) for our Gaussian distribution (1). Also shown with dashed lines Fisher (F), eq. (32), and with dotted lines spherically-uniform

(U), eq. (33), density functions and distributions. In (a, b) we see that in the limit σ/Fµ → 0, the Gaussian off-axis angular distribution approaches a Fisher
distribution; whilst in (g, h) we see that in the opposite limit σ/Fµ → ∞, the Gaussian off-axis angular distribution approaches a spherically-uniform distribution
(as does the Fisher distribution). Compare with Fig. 8.
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Figure 8. Examples, with different relative vectorial dispersions σ/Fµ of the marginal off-axis angular probability density function pg2
(θ ) and corresponding

cumulative distributions Pg2
(θ ) for our bi-Gaussian distribution (2). Also shown with dashed lines Bingham (B), eq. (34), and with dotted lines uniform (U),

eq. (33), density functions and distributions. In (a, b) we see that in the limit σ/Fµ → 0, the bi-Gaussian off-axis angular distribution approaches a Bingham
distribution; whilst in (g, h) we see that in the opposite limit σ/Fµ → ∞, the bi-Gaussian off-axis angular distribution approaches a uniform distribution (as
does the Bingham distribution). Compare with Fig. 7.
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5.3 Averaging vector parts

It is important to recognize that biased estimates also follow from
arithmetic averages of scalar parts of the palaeomagnetic vector
field, and this is true even for the isotropic variance considered here.
To illustrate these biases, we consider first the case for intensity data.
Given a Gaussian or bi-Gaussian distribution, eqs (10) or (16), the
expected intensity is just the average, with due respect to probability,
of all possible intensities,

Eg

(
F | Fµ, σ 2

) =
∫ ∞

0
pg (F) Fd F. (38)

The integration is discussed in Appendix D. With the formula for the
expected intensity in hand, we can calculate the typical bias between
an arithmetic mean of the measured intensities and the intensity of
the mean vector,

δFg = Eg(F) − Fµ. (39)

In Fig. 9(a) we show the size of this bias as a function of the absolute
vectorial dispersion σ , given a variety of mean vectorial intensities
Fµ. Note that the bias is always positive, and that for many geophys-
ical studies, a bias of several microTesla is not to be unexpected. We
conclude that the mean intensity should not be identified with the
intensity of the mean vector.

Next, let us examine the case for inclination-only data. The
problem of inverting palaeomagnetic inclination data taken from
azimuthally-unoriented borecores for the true, but unknown, mean
inclination has been addressed by many authors, usually assum-
ing locally Fisherian statistics (Briden & Ward 1966; Kono 1980;
McFadden & Reid 1982; Cox & Gordon 1984). One of the conclu-
sions of these studies is that simply averaging inclination data yields
a biased estimate of the inclination of the mean vector, especially
when the mean vector is nearly vertical. We measure the bias by the
difference

δ Ig = Eg(I ) − Iµ, (40)

where the inclination expectations are given in Appendix F. In
Fig. 9(c) we show the bias for the Gaussian case, as a function
of the relative vectorial dispersion σ/Fµ, given a variety of mean
vectorial inclinations I µ. For many geophysical studies, a bias of
tens of degrees or more is not to be unexpected.

From Appendix G we find that, for the Gaussian distribution
considered here, the bias in declination estimation resulting from
an arithmetic average is zero for all relative vectorial dispersions
σ/Fµ,

δDg = Eg(D) − Dµ = 0, (41)

provided, of course, that the true mean direction is not vertical, in
which case the declination is indeterminate. Finally, in Fig. 9(g) we
show the expected off-axis angle for a Gaussian distribution, namely
Eg1

(θ ), as a function of relative vectorial dispersion. Corresponding
mathematical derivations are given in Appendix E.

5.4 Variance of field components

Having found that some arithmetic means are biased estimates of
the true underlying mean vectorial components, it is perhaps not
surprising that the corresponding variances can also be shown to
be biased estimates of the true underlying vectorial variance. For
example, given a Gaussian or bi-Gaussian distribution, the variance

of the intensity is just

Vg

(
F | Fµ, σ 2

) = Eg(F2) − [Eg(F)]2

=
∫ ∞

0
pg(F)F2 d F − [Eg(F)]2. (42)

The integration is given in Appendix D. With this, we can compare
the standard deviation of the intensity,

Sg(F) = [Vg(F)]
1
2 , (43)

with the absolute vectorial dispersion σ . In Fig. 9(b) we see that,
for many geophysical studies, these two quantities can differ by
several microTesla. In a similar vein, and using derivations given
in the appendices, in Fig. 9 we see that the standard deviation of
the directional quantities, namely inclination, declination, and off-
axis angle, are not simply related to the relative vectorial dispersion
σ/Fµ.

5.5 Maximum likelihood

In using palaeomagnetic data to obtain accurate estimates of the
properties of the vector field, its mean and its variance, we apply the
method of maximum-likelihood; for a general review see Cramér
(1945) or Stuart et al. (1999). With this approach, the most likely
model distribution parameter is estimated from its probability den-
sity function, the so-called likelihood function, which is constructed
from the joint probability density function for the existing set of data.
Toward that end, we assume that the statistics for the palaeovector
field are well represented by either a Gaussian or bi-Gaussian dis-
tribution. The validity of this assumption can be checked after the
fitting to the data has been performed. Given a set of data, in making
estimates of the vectorial mean and variance we use the Gaussian
density functions and/or their marginal expressions to construct the
appropriate likelihood function. In its most general form, for all
usually encountered types of data groups, we maximize

L =
NF I D∏
j=1

pg(Fj , I j , D j )
NI D∏
k=1

pg (Ik, Dk)

×
NF I∏
l=1

pg (Fl , Il )
NF∏

m=1

pg (Fm)
NI∏

n=1

pg (In) , (44)

where the individual data density functions are given in the appen-
dices. NFID is the number of data for which intensity-inclination-
declination triplets are available; NID is the number of data for which
only inclination-declination pairs are available, etc. Maximizing L,
and thus determining a particular estimated vectorial mean and vari-
ance, takes account of the correlations that exist within these differ-
ent spherical-coordinate data groups, at least insofar as Cartesian
vectorial components have isotropic variance, eq. (7). The informa-
tional content of these correlations is not exploited when different
palaeomagnetic measurement types from the same rock deposition
or archaeological artefact are treated separately, for example, by cal-
culating a mean direction using unit vectors and, separately, arith-
metically averaging the intensities. In the usual way, because it is
numerically advantageous, we find the most likely set of distribution
parameters by maximizing the logarithm of (44), something we ac-
complish by a simplex method; for reference see Press et al. (1992).
The foregoing estimator is general, it can be employed in the anal-
ysis of a variety of palaeomagnetic data types used for numerous
geophysical applications. Next, we discuss two such applications:
palaeomagnetic secular variation and palaeomagnetic acquisition.
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Figure 9. Examples of the bias δ of simple arithmetic averages and the dispersion S of the spherical-coordinate variables for the Gaussian distribution, (10).
(a) The intensity bias δFg as a function of the vectorial dispersion σ for four different vectorial-mean intensities Fµ, namely 7.5, 15, 30, and 60 µT. (b) The
corresponding intensity dispersion Sg(F) as a function of the vectorial dispersion and for the same vectorial-mean intensities. (c, d) The inclination bias δ Ig1

,
and the corresponding inclination dispersion Sg1

(I ), each as a function of the relative vectorial dispersion σ/Fµ, given different mean vectorial inclinations
I µ ranging from vertically up (−90◦) to vertically down (90◦). (e, f) The declination bias δDg1

, and the corresponding declination dispersion Sg1
(D), each as

a function of relative dispersion, given different mean inclinations. (g, h) The expected off-axis angle Eg1
(θ ) and its dispersion Sg1

(θ ), each as functions of
relative dispersion.

C© 2003 RAS, GJI, 152, 515–565



530 J. J. Love and C. G. Constable

6 P A L A E O M A G N E T I C S E C U L A R
VA R I A T I O N

In this section we examine palaeomagnetic secular variation
recorded in published data measured from basalts from the island
groups of Hawaii and Réunion (actually Réunion and its surround-
ing region). We have chosen to examine data from these two sites
for three reasons. The first reason is that the volcanoes at Hawaii
and Réunion have been active during similar periods of time: dur-
ing the past 5 Ma and, in particular, during the Brunhes chron (the
past 780 ka). These periods of time are fairly short compared to the
timescales associated with tectonic shift and deformation, and it is
reasonable to expect that the majority of the lavas from these island
groups have remained relatively undisturbed since their deposition,
a prerequisite for a study of data recording directional secular vari-
ation. Furthermore, over this period of time the conditions at the
core–mantle boundary have probably not changed appreciably, and
insofar as palaeosecular variation is affected by core–mantle cou-
pling (Cox & Doell 1964; McFadden & Merrill 1995), the data
are related to more-or-less stationary physical conditions within the
Earth’s core. The second reason we have chosen to analyse data
from Hawaii and Réunion is that they are on almost exactly op-
posite latitudes, and therefore, data from these two sites allow us
to investigate the long-term geometry and secular variation of the
magnetic field. A certain amount of debate has centered around the
issue of whether or not it is possible to resolve persistent non-zonal
features in the palaeomagnetic field (Johnson & Constable 1995;
Kelly & Gubbins 1997; Carlut & Courtillot 1998). However, it is
reasonably clear, based on a global distribution of palaeomagnetic
data, that, in addition to an (obvious) axial dipole, there is also a
persistent axial quadrupole ingredient in the 5 Ma time-averaged
field (Wilson 1970; McElhinny et al. 1996). Assuming that this is
true, then because of their relative geographic locations, data from
Hawaii and Réunion should display different vectorial means, and
possibly different vectorial dispersions as well. And finally, the third
reason we have chosen to examine data from these two sites is that
they have been extremely heavily sampled by palaeomagnetists. The
intensity and directional data collected from Hawaii and Réunion
are sufficiently numerous to make statistical analyses of the full-
vector field more robust than for perhaps any other pair of sites on
the globe. (The most extensively sampled site is Iceland, but very
few absolute intensity measurements are available from there.) The
data sets for Hawaii and Réunion (and its surrounding region) are
summarized in Tables 1 and 2.

6.1 Data selection and the data set

The data must be sorted and placed into single-flow groups, with care
taken to avoid redundancy and sites suffering post-depositional ori-
entational shifts. Of the available palaeomagnetic data from the vari-
ous Hawaiian Islands covering the past 5 Ma, much of it comes from
the Hawaiian Scientific Drilling Project (HSDP) and the near-by Sci-
entific Observation Hole 4 (SOH-4). The HSDP measurements of
Holt et al. (1996) and Laj & Kissel (1999) contain overlapping incli-
nation data, whilst the latter study also includes intensity data. We
have used all of the data from Laj & Kissel that satisfy our selection
criteria, as well as those from Holt et al. for flows not measured or
reported by Laj & Kissel. Likewise, in other cases, where there have
been multiple studies of a given flow, we have taken care to avoid
redundancy by selecting the measurements made with the most mod-
ern or thorough methods. For example, the directional data for the
1840 flow are taken from Tanaka & Kono (1991) instead of Doell
& Cox (1963). If (say) an intensity measurement from a flow is re-

ported in a particular paper, but the directions for the same flow are
reported in a different paper (possibly by different authors), then we
have grouped these data together as a triplet (F, I , D) representing
the full magnetic vector field at the time of deposition. For example,
Doell & Cox (1963) obtained directional data from the 1907 and
1935 flows, whilst Khodair & Coe (1975) obtained intensity data
for the same flows. Grouping such data is important if we are to ex-
ploit the informational content of correlations between the different
magnetic-field components. In a few cases, separate single-intensity
measurements of a given flow have been reported in separate papers
but under related authorship (Ueno & Kono 1977; Kono & Tanaka
1977); these data have been averaged to obtain a more robust result.
Finally, if the palaeomagnetic data are part of a study concerned
with motion along a fault, from deformation, or from a landslide,
then we selected only the directional data from the undisturbed sites.
For example, in the Hilina fault study by Riley et al. (1999) we have
kept the Keana Bihopa data, but have excluded the Puu Kapukapu
data, since it has undergone subsidence and therefore the data have
been subjected to an orientational shift. Although palaeomagnetic
data are often used to estimate the change in rock-bed orientation,
to use ‘corrected’ data for palaeosecular variation studies invites the
risk of circularity, something we seek to avoid.

Compared to the Hawaiian Islands, there are many fewer palaeo-
magnetic data covering the past 5 Ma available from the island
of Réunion itself, and thus, for augmentation, we have incorpo-
rated data from nearby Mauritius, as well as the somewhat more
distant islands of Madagascar and Comores. The Madagascar data
(Andriamirado 1971) are only roughly dated (0.00–1.60 Ma), and
they are therefore used in the bimodal bi-Gaussian analysis cover-
ing the past 5 Ma which follows, but not in the unimodal Gaussian
analysis of the Brunhes chron. We have grouped directional data
from Réunion and Mauritius, reported in Chamalaun (1968) and
McDougall & Chamalaun (1969), with intensity data, obtained from
the identical flows and reported in Senanayake et al. (1982), to form
full-vectorial triplets (F, I , D). Although the island of Réunion has
been the site of recent volcanic activity, unlike Hawaii no palaeomag-
netic data from historical flows have been reported in the literature.
Because of this, we have augmented the Réunion data set with two
magnetic vectors taken from the modern-field model of Bloxham &
Jackson (1992) for the years 1840 and 1990.

For both Hawaii and Réunion, the selection criteria for direc-
tional data are similar to those used by others (Prévot & Camps
1993; Quidelleur et al. 1994; McElhinny & McFadden 1997). Each
palaeomagnetic direction in our data set, inclination and declination
(I , D), is an average of measurements from at least two magnetically-
cleaned samples per flow, with the precision parameter α95, the semi-
angle of the cone of 95 per cent confidence centered on the mean
direction, less than 20◦. Each absolute intensity (F) in our data set
is an average of Thellier- or Shaw-type measurements from at least
two samples per flow. In all source papers considered here, authors
report not only the mean of multiple measurements of F, but also
the number of measurements N and the standard deviation of the
different intensity measurements σ F . The error on the mean is es-
timated as σ (F) = σF/

√
N . We accept only absolute intensities

F where the relative error σ (F)/F is less than 33 per cent; but, in
fact, the vast majority of the intensity data have relative errors that
are much smaller than this cut-off. For the Hawaiian data covering
the past 5 Ma (Brunhes, 780 ka), there are 457 (400) intensities,
1691 (1022) inclinations, 1207 (578) declinations, making this one
of the largest vector data sets ever considered for a single site. For
the Réunion data covering the past 5 Ma (Brunhes, 780 ka) there are
63 (53) intensities, 285 (223) inclinations, 285 (223) declinations,
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Table 1. Hawaiian vector palaeosecular-variation data set. Locality is that for the general area. Name denotes the particular site or flow name, as given in
the source papers. Lat and Long denote the present latitude and longitude of the site. NF , N I , ND are, respectively, the number of intensity, inclination, and
declination data. Age denotes the estimated age range of the sampled flows. Author denotes the source paper.

Locality Name Lat Long NF N I ND Age Author
◦N ◦E kyr

Hawaii Historical 19.5 204.5 0 8 8 Brunhes Doell & Cox (1963)
Hawaii Puna 19.5 204.5 0 18 18 Brunhes Doell & Cox (1965)
Hawaii Kahuku 19.5 204.5 0 28 28 10.00–75.00 ”
Hawaii Hamakua 19.5 204.5 0 11 11 Brunhes ”
Hawaii Ninole 19.5 204.5 0 25 25 >10.00 ”
Hawaii Pololu 19.5 204.5 0 29 29 200.00–300.00 ”
Hawaii Kau 19.5 204.5 0 54 54 <10.00 Doell (1969)
Kauai 22.1 200.5 0 91 91 1400.00–5600.00 Doell (1972c)
Oahu Honolulu 21.5 202.0 0 25 25 30.00–850.00 Doell (1972b)
Nihau Kiekie 21.9 199.8 0 11 11 300.00–700.00 Doell (1972a)
Nihau Paniau 21.9 199.8 0 5 5 3000.00 ”
Nihoa 23.0 198.0 0 14 14 3000.00 ”
Oahu Koolau 21.5 202.0 0 33 33 1800.00–2600.00 Doell & Dalrymple (1973)
Oahu Waianae 21.5 202.0 0 64 64 2400.00–3600.00 ”
Hawaii Historical 19.5 204.5 6 0 0 0.05–0.10 Khodair & Coe (1975)
Hawaii Historical 19.5 204.5 5 0 0 0.25 Kono & Tanaka (1977); Ueno & Kono (1977)
Hawaii 19.5 204.5 6 7 7 0.87–>17.86 Coe et al. (1978)
Hawaii Kilauea 19.5 204.5 0 94 94 Brunhes Holcomb (1980)
Kauai Kukui 22.1 200.5 10 29 29 3800.00–5100.00 Bogue & Coe (1984)
Kauai Anahola 22.1 200.5 3 15 15 3800.00–5100.00 ”
Kauai Polihale A 22.1 200.5 0 13 13 3800.00–5100.00 ”
Kauai Kahililoa 22.1 200.5 0 27 27 3800.00–5100.00 ”
Oahu Koolau 21.5 202.0 4 0 0 1800.00–2600.00 Coe et al. (1984)
Oahu Waianae 21.5 202.0 7 0 0 2400.00–3600.00 ”
Hawaii 1950, 1972 19.5 204.5 0 2 2 0.03 Castro & Brown (1987)
Hawaii Historical 19.5 204.5 7 7 7 0.00–1.86 Tanaka & Kono (1991)
Hawaii Hilo 19.5 204.5 0 11 11 Brunhes Buchanan-Banks (1993)
Hawaii 19.5 204.5 22 22 22 0.26–13.21 Mankinen & Champion (1993b)
Hawaii 19.5 204.5 6 6 6 13.53–31.10 Mankinen & Champion (1993a)
Hawaii Kilauea 19.5 204.5 0 73 73 0.00–>2.40 Hagstrum & Champion (1994)
Hawaii HSDP 19.5 204.5 0 40 0 0.00–420.00 Holt et al. (1996)
Hawaii Mauna Loa 19.5 204.5 0 20 20 1.30 Jurado-Chichay et al. (1996)
Hawaii Kohala 19.5 204.5 7 10 10 60.00–400.00 Brassart et al. (1997)
Hawaii Mauna Loa 19.5 204.5 0 62 62 Brunhes Champion & Lockwood (1998)
Hawaii Mauna Loa 19.5 204.5 8 8 8 <35.00 Valet et al. (1998)
Hawaii Keana Bihopa 19.5 204.5 0 21 21 0.35–100.00 Riley et al. (1999)
Hawaii HSDP 19.5 204.5 151 152 0 0.00–420.00 Laj & Kissel (1999)
Oahu Paheehee 21.5 202.0 0 28 28 3300.00 Herrero-Bervera & Valet (1999)
Oahu Keaau 21.5 202.0 0 93 93 3300.00 ”
Oahu Kamaileunu 21.5 202.0 0 29 29 3300.00 Herrero-Bervera & Coe (1999)
Oahu Haleakala 21.5 202.0 0 35 35 3580.00 ”
Oahu Kaena STSR 21.5 202.0 0 55 55 3000.00 Laj et al. (1999)
Oahu Kaena KP 21.5 202.0 0 52 52 3000.00 ”
Lanaii 20.8 203.0 0 8 8 780.00–1460.00 Herrero-Bervera et al. (2000)
Oahu Koolau 21.5 202.0 4 14 0 2060.00–3020.00 Laj et al. (2000)
Oahu Kealia 21.5 202.0 1 3 3 2980.00–3020.00 ”
Oahu Kaena STSR 21.5 202.0 2 0 0 3120.00 ”
Oahu Kaena KP 21.5 202.0 1 2 2 3220.00 ”
Oahu Mailiili 21.5 202.0 0 3 3 3270.00–3280.00 ”
Oahu Pahehe 21.5 202.0 2 2 2 3300.00 ”
Oahu Kepuhi Point 21.5 202.0 4 4 4 3890.00–3930.00 ”
Kauai Ohaiula 22.1 200.5 13 28 28 3800.00–5100.00 Bogue (2001)
Kauai Polihale B 22.1 200.5 6 22 22 3800.00–5100.00 ”
Hawaii SOH-4 19.5 204.5 96 176 0 0.00–98.00 Laj et al. (2002)
Hawaii SOH-1 19.5 204.5 67 102 0 0.00–40.00 Teanby et al. (2002)
Hawaii HSDP 19.5 204.5 19 0 0 420.00–550.00 Tauxe & Love (2003)

Total Brunhes 400 1022 578
Total 457 1691 1207
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Table 2. Réunion vector palaeosecular-variation data set.

Locality Name Lat Long NF N I ND Age Author
◦N ◦E kyr

Réunion Group 1 −21.1 55.5 0 47 47 Brunhes Chamalaun (1968)
Réunion Groups 2,3 −21.1 55.5 0 29 29 1000.00–2000.00 ”
Mauritius −20.3 57.5 0 15 15 173.00–5000.00 McDougall & Chamalaun (1969)
Madagascar −17.0 47.5 0 14 14 0.00–1600.00 Andriamirado (1971)
Comores Anjouan −12.2 44.4 0 24 24 Brunhes Watkins et al. (1972)
Comores Grande Comore −12.2 44.4 0 13 13 Brunhes ”
Réunion Grande Chaloupe −21.1 55.5 0 4 4 2020.00 McDougall & Watkins (1973)
Réunion Rivière St Denis −21.1 55.5 0 22 22 2020.00 ”
Réunion −21.1 55.5 0 20 20 Brunhes Watkins (1973)
Réunion Rivière de Bellecombe −21.1 55.5 9 13 13 4.75–11.00 ”
Mauritius −20.3 57.5 6 0 0 200.00–3500.00 Senanayake et al. (1982)
Réunion −21.1 55.5 6 0 0 600.00–2000.00 ”
Réunion Rivière des Remparts −21.1 55.5 12 17 17 82.00-98.00 Chauvin et al. (1991)
Réunion Modern field 1840, 1990 −21.1 55.5 2 2 2 0.01–0.16 Bloxham & Jackson (1992)
Réunion Piton des Neiges −21.1 55.5 28 65 65 70.00–130.00 Raı̈s et al. (1996)

Total Brunhes 53 223 223
Total 63 285 285

making this a relatively large data set, although quite a bit smaller
than that for Hawaii.

6.2 Biases in the palaeomagnetic record

Because volcanic activity is unrelated to, and therefore uncorre-
lated with, geomagnetic secular variation, an unbiased sampling
by palaeomagnetists of many lava flows coming from many
eruptive episodes could yield a set of data that might be considered
to be, in some respects, an unbiased record of secular variation. Of
course, in reality volcanic activity is highly sporadic and there might,
therefore, be some bias in the palaeomagnetic record toward certain
periods of time when volcanic eruptions happened to have been un-
usually prolific. Recognizing such obvious difficulties, some inves-
tigators have combined data from stratigraphically-adjacent flows
if they were judged to have ‘similar’ directions; the thinking being
that serially-similar data must be indicative of a rapid succession
of lava depositions preserving more-or-less coincident records of
the magnetic field. It should be clear, however, that this interpre-
tation is not necessarily valid. After all, a sequence of similar data
could also arise from a quiescent period of secular variation. Indeed,
Love (1998) has noted that selective averaging of similar data from
stratigraphically-adjacent flows can, itself, introduce bias. Lacking
detailed information about the dates of each lava flow, one way to
partially alleviate the troublesome affects of sporadic volcanic activ-
ity, and hopefully obtain more robust statistical results, is to simply
use many palaeomagnetic data coming from many different eruptive
episodes. We admit that this is still not a perfect approach, nonethe-
less, it is the approach we prefer, it being consistent with the basic
tenet of statistical analysis: Data should not be chosen on the basis
of what they are.

A related nuisance stems from preferential sampling by palaeo-
magnetists: transitional periods, reversals and excursions, are dis-
proportionately over-represented in the literature. Previous investi-
gators have sought to debias the palaeomagnetic record by picking
data recording either transitional or non-transitional stable periods.
This requires that the distinction between a transitional and non-
transitional period be formally defined, usually done in terms of a
cut-off of the virtual geomagnetic pole (VGP) latitude. However,
such definitions are entirely arbitrary, they lead to biased data se-
lection, and since this could affect the conclusions of a statistical

analysis, they are unsatisfactory. In this study, although we analyse
palaeomagnetic data coming from Hawaii and Réunion covering the
past 5 Ma, a span which includes several polarity transitions and is
therefore subject to sampling bias, we also perform separate anal-
yses on data recording the magnetic field during only the current
normal Brunhes chron. Even then, bias is not entirely avoided, brief
excursions have been identified within the Brunhes. Nonetheless,
this temporal restriction represents an improvement in the situation,
since full reversals are more easily identified than brief excursions.

6.3 Normalization

The data come from the general localities of Hawaii and Réunion,
however, there are, of course, small differences in the exact location
of the various sample sites. To account for these differences in lo-
cation, we have adjusted all of the intensity and inclination data to
a common-site latitude,

F → F × FAD(�C )/FAD(�S), (45)

I → I + IAD(�C ) − IAD(�S), (46)

where �C and �S are the common- and true-site latitudes, where
FAD and IAD are the intensity and inclination of an axial dipole given
by

tan IAD = 2 tan �, (47)

FAD = g0
1(1 + 3 sin2 �)

1
2 , (48)

and where g0
1 is a constant. These between-site adjustments of the

data are small; hypothetical adjustments for the unknown non-
dipolar field would be insignificant. We adjust the Hawaii and
Réunion data to common-site latitudes �C of ±19.5◦N.

6.4 Hawaiian Secular Variation: 5 Ma

We begin our likelihood analysis by considering the Hawaiian data
covering that past 5 Ma. The data set consists of a mixture of data
groups: intensities with directions, directions only, intensities with
inclinations, intensities only, and inclinations only. To obtain the
vectorial mean and variance, we model the data with a bimodal
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Table 3. Vector palaeosecular-variation maximum-likelihood estimation for both Hawaii and Réunion. Data types denotes the kind of data
used in the estimation, so, for example, F, I , D means that all available intensity, inclination, declination data were used; I , D means that only
inclination and declination data were used, etc. Fµ, I µ, Dµ, σ , and σ/Fµ denote the maximum-likelihood estimates of intensity, inclination,
declination, absolute vectorial dispersion, and relative vectorial dispersion. pKS(F) (pKS(θ )) denotes the Kolmogorov–Smirnov probability that
the intensity (off-axis angular) data could have been drawn from a three-dimensional Gaussian distribution with the given estimated parameters.
Comparison values are also shown for an axial dipole and global field models using data covering 5 Ma, given site latitude and longitude (19.5◦N,
204.5◦E) for Hawaii and (−19.5◦N, 55.5◦E) for Réunion. See Figs 10 and 11.

Maximum likelihood Fµ I µ Dµ σ σ/Fµ PKS(F) PKS(θ )
data types (µT) (◦) (◦) (µT)

Hawaii
F, I , D 34.88 30.22 0.15 9.18 0.2633 0.0000 0.0000
I , D – 29.94 0.07 – 0.2431 – –
F, I 34.48 31.13 – 9.66 0.2801 0.0000 –
F 28.65 – – 14.15 0.4939 0.7170 –
I – 30.68 – – 0.2401 – –

F I D
Axial Dipole – 35.32 0.00
Global Field Model (Kelly & Gubbins 1997) – 31.01 2.04

Réunion
F, I , D 36.10 −39.84 −0.76 8.56 0.2371 0.0935 0.0019
I , D – −39.66 −0.63 – 0.2252 – 0.0279
F, I 35.59 −40.49 – 9.14 0.2569 0.1459 –
F 32.83 – – 12.23 0.3725 0.7277 –
I – −40.05 – – 0.2350 – –

F I D
Axial Dipole – −35.32 0.00
Global Field Model (Kelly & Gubbins 1997) – −37.42 −2.54

bi-Gaussian distribution (16). The likelihood function that accom-
modates all data-group combinations is

L =
NF I D∏
j=1

pg2
(Fj , I j , D j )

NI D∏
k=1

pg2
(Ik, Dk)

×
NF I∏
l=1

pg2
(Fl , Il )

NF∏
m=1

pg2
(Fm)

NI∏
n=1

pg2
(In) . (49)

Results are summarized in Table 3 and shown in Fig. 10, where we
compare the model probability density functions p and cumulative
distributions P with those of the data themselves. Note that, when
showing the data distributions, we have enforced normal-reverse
symmetry, that is, symmetry under change in sign of the magnetic
field, as in transformation (14). This is done only for purposes of
comparison; identical likelihood maximization would be attained
without enforcing this symmetry on the data.

In Fig. 10 we see that the variance of intensity (declina-
tions) is larger (smaller) than that for the best-fitting, spherically-
symmetrical bi-Gaussian distribution, whilst the inclinations are
fitted rather well by the same bi-Gaussian distribution. This observa-
tion highlights the complexity of palaeomagnetic secular variation
at Hawaii: the local vectorial variance is clearly not isotropic, an ob-
servation consistent with that made by others on the basis of Hawai-
ian directional data (Creer et al. 1959; Tsunakawa 1988; Tanaka
1999). Indeed, in response to observations such as these, a num-
ber of anisotropic giant-Gaussian forward models, with different
standard deviations for the orthogonal Cartesian field components,
have been proposed (Quidelleur & Courtillot 1996; Constable &
Johnson 1999). We believe that a generalization of the isotropic
inverse modelling considered here would probably yield fits to the
Hawaiian palaeovector data that are better than those seen in Fig. 10.

To test our estimates against those that might be made with data
coming only from an azimuthally-unoriented borecore, in Fig. 10
we also show maximum-likelihood results where we have omitted

all declinations. For this case, instead of maximizing (49) we max-
imized

L =
NF I D+NF I∏

j=1

pg2
(Fj , I j )

NI D+NI∏
k=1

pg2
(Ik)

NF∏
m=1

pg2
(Fm) . (50)

We conducted a number of other estimation experiments, system-
atically omitting different parts of the Hawaiian palaeovector data
and then maximizing the relevant likelihood function; results are
summarized in Table 3. In general, with one or more vectorial part
removed from the fitting experiment, the remaining data are rela-
tively better fitted; for example, fitting the intensities alone yields
a Kolmogorov–Smirnov probability of 0.7170, yet when the direc-
tions are included in the fitting experiment, the fit to the intensities
is severely degraded. Interestingly, the mean inclinations and de-
clinations are relatively consistently estimated, there are, however,
more sizable differences between the various estimated intensities
of the mean vector as well the vectorial dispersions. Again, these
observations are consistent with anisotropic palaeosecular variance
at Hawaii.

6.5 Réunion secular variation: 5 Ma

Next, we consider the Réunion data covering the past 5 Ma. There
are many fewer data from Réunion than from Hawaii, and, since none
of the data were taken from azimuthally-unoriented borecores, they
consist of a slightly different mixture of data groups: intensities
with directions, directions only and intensities only. To obtain the
vectorial mean and variance, we model the data with a bimodal
bi-Gaussian distribution using the likelihood function

L =
NF I D∏
j=1

pg2
(Fj , I j , D j )

NI D∏
k=1

pg2
(Ik, Dk)

NF∏
m=1

pg2
(Fm). (51)

Results are summarized in Table 3 and shown Fig. 11, and as with
the Hawaiian data, when showing the data distributions, we have en-
forced normal-reverse symmetry. The Réunion data are better fitted
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Figure 10. Maximum-likelihood fits for the Hawaiian data covering the past 5 Ma and using a bimodal, 3-D bi-Gaussian distribution, eq. (16), and associated
marginal density functions. The marginal probability density functions p and corresponding cumulative distributions P are shown for (a, b) intensity F, (c, d)
inclination I , (e, f) declination D, and (g, h) off-axis angle θ . The fits shown by the solid lines correspond to a maximum-likelihood estimation using all the
available data groups (F , I , D); the dashed lines correspond to an estimation where the declinations have been omitted. Normal-reverse polarity symmetry of
the data bins has been enforced. Numerical values are given in Table 3.
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Figure 11. Same as Fig. 10 except for the Réunion data covering the past 5 Ma.
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by the bi-Gaussian distribution than are the Hawaiian data, with cor-
respondingly larger Kolmogorov–Smirnov probabilities, but even
here there is some noticeable misfit, which, as with the Hawaiian
data, might be remedied by allowance for anisotropic variance. Al-
though it is obvious that some signal in the data remains to be
modelled, given the extreme simplicity of the assumed bi-Gaussian
distribution, and given the incomplete and non-uniform sampling
inherent to palaeomagnetic lava data, it is actually rather satisfying
that the fits to the Réunion are as good as they are.

6.6 Note on normal-reverse symmetry

For the Réunion data, in Fig. 12 we present the data distributions
without enforcing symmetry under change in sign of the magnetic
field, as opposed to what we have done previously. Once again, we
emphasize that this is irrelevant to the maximum-likelihood estima-
tion using the symmetrical bi-Gaussian distribution, but it affects
posterior comparisons of the model distributions with the data distri-
butions. Note that in both our Hawaii and Réunion data sets, normal
polarity data are more numerous than reverse polarity data. This kind
of polarity asymmetry can arise for three reasons. First, since most
palaeomagnetic lava data are collected from surface flows, there is a
sampling bias skewed toward more recent episodes of volcanic ac-
tivity, and especially for Hawaii, these are during the present normal
Brunhes chron. Second, a polarity bias might simply reflect differ-
ences in volcanic activity: over a certain period of time a reverse
(normal) polarity might accidentally be recorded more often than
a normal (reverse) polarity. Third, it might be that, over a certain
period of time, the field was more often of reverse (normal) polarity
than normal (reverse) polarity. If this is the case it might be acci-
dental, reversals do not occur regularly in time, or it might reflect a
long-term, slowly-varying state of the magnetic field, giving rise to
what is commonly known as a ‘polarity bias’. There is, of course,
a slight equivocation, since during a particular chron, a normal one
(say), there are brief excursional periods, when the field might pos-
sibly be better characterized as being of reverse polarity. However,
making a fine distinction between normal and reverse polarities,
especially during transitional and excursional periods, requires ar-
bitrary definitions which, as we have mentioned, might themselves
be biased. Having said all of this, it should be recognized that regard-
less of whether or not there actually exists a polarity bias, because
of invariance under the transformation (14), the particular polarity
is itself irrelevant: for either polarity, the physics is the same. There-
fore, when comparing model distributions with data distributions it
is often preferable, as in Fig. 11, to enforce symmetry under change
in sign of the magnetic field. We consider polarity bias to be an
important issue, but its study requires a formalism that is different
from that developed here.

6.7 Hawaiian secular variation: Brunhes

Because the available palaeomagnetic data might be biased due to
preferential sampling of polarity transitions, we consider now the
more restricted period of the normal-polarity Brunhes chron. For
the Hawaiian data, after maximizing the likelihood function

L =
NF I D∏
j=1

pg1
(Fj , I j , D j )

NI D∏
k=1

pg1
(Ik, Dk)

×
NF I∏
l=1

pg1
(Fl , Il )

NF∏
m=1

pg1
(Fm)

NI∏
n=1

pg1
(In) , (52)

for the unimodal Gaussian distribution (10), we obtain the results
summarized in Table 4 and shown in Fig. 13. As with the bi-Gaussian

fits to the data covering past 5 Ma, for the Brunhes data the misfit
to the spherically-symmetrical Gaussian distribution reveals that
the variance of the vector data is anisotropic; in fact the degree
of anisotropy within the Brunhes appears to be larger than it is
for the past 5 Ma, although some of this might by symptomatic of
suboptimal temporal sampling. Having said that, in general there
is substantial agreement between estimates of the mean vector and
vectorial variance using data covering 5 Ma and the subset of data
covering the Brunhes. Therefore, at least for the data considered
here, it is possible that our expressed concern about bias resulting
from preferential sampling of polarity transitions is something of
an excessive worry.

6.8 Réunion secular variation: Brunhes

The Réunion Brunhes data are modelled using the likelihood
function

L =
NF I D∏
j=1

pg1
(Fj , I j , D j )

NI D∏
k=1

pg1
(Ik, Dk)

NF∏
m=1

pg1
(Fm), (53)

and results are summarized in Table 4 and shown in Fig. 14. As
with the Réunion data covering the past 5 Ma, there is still no-
ticeable misfit, mostly in declination, and some of the Kolmogorov–
Smirnov probabilities remain rather small, indicative of unmodelled
signal in the data (probably some anisotropy). However, what the
Kolmogorov–Smirnov probabilities don’t measure is the fact that
most of the general character of the data is described by the simple
unimodal Gaussian distribution; the fit is much better here than it
is for Hawaii. The scatter seen in the bins of intensity is probably
the result of small data numbers; more intensity measurements from
Réunion would certainly be welcome.

6.9 Palaeomagnetic field asymmetry

In Fig. 15 we compare fits to the Hawaiian and Réunion Brunhes
data. The two sites are on virtually opposite latitudes, and could,
therefore, be expected to display symmetry if (say) the mean field
was an axial dipole. Instead, there are significant differences in all
local model parameters, both means and variances. Note especially
differences in the mean inclination, where, for fits using all available
measurements (F, I , D) and, with an appropriate change of inclina-
tion sign, the difference is a surprisingly large 9.61◦. Asymmetry in
palaeomagnetic inclination means from sites on opposite sides of
the equatorial plane can be attributed to an axial dipole-quadrupole
structure in the time-averaged field, but the inclination differences
observed here are greater than those predicted by most mean-field
models, such as those compared in Table 4. A more appropriate
comparison is between unit directional vectors. With a change in in-
clination sign, the mean directions from Hawaii and Réunion differ
by an angle of 9.92◦, which, given the number of data involved in
this analysis, is by palaeomagnetic standards a robust demonstra-
tion of a persistent departure from a simple geocentric axial dipole.
Finally, we note that the intensity data from Hawaii display greater
variance than do the intensity data from Réunion, an observation
that, by itself, is indicative of asymmetry in the field’s behaviour.

6.10 Alternative intensity fits

For further comparison, we performed a number of different
maximum-likelihood fits to the Hawaiian and Réunion Brunhes
intensity data: using a Rayleigh–Rician distribution (correspond-
ing to the 3-D vectorial Gaussian distributions developed here), a
1-D normal distribution, a log-normal distribution, and a gamma
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Figure 12. Same as Fig. 11 except that normal-reverse polarity symmetry of the data bins has not been enforced.
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Table 4. Same as Table 3, except these results are for the Brunhes. See Figs 13 and 14.

Maximum likelihood Fµ I µ Dµ σ σ/Fµ PKS(F) PKS(θ )
data types (µT) (◦) (◦) (µT)

Hawaii
F, I , D 35.78 29.60 2.56 8.75 0.2447 0.0000 0.0000
I , D – 29.10 2.42 – 0.2142 – 0.0000
F, I 34.79 30.38 – 10.08 0.2897 0.0000 –
F 29.27 – – 13.86 0.4737 0.4529 –
I – 29.62 – – 0.2534 – –

F I D
Axial Dipole – 35.32 0.00
Global Field Model (Johnson & Johnson 1995) LB1 – 27.08 2.50
Global Field Model (Carlut & Courtillot 1998) Q94-me – 31.61 4.46

Réunion
F, I , D 38.81 −39.21 −0.49 7.94 0.2093 0.5144 0.0152
I , D – −39.02 −0.39 – 0.2019 – 0.1528
F, I 38.71 −39.55 – 8.63 0.2230 0.7343 –
F 37.45 – – 10.29 0.2749 0.8815 –
I – −39.23 – – 0.2110 – –

F I D
Axial Dipole – −35.32 0.00
Global Field Model (Johnson & Johnson 1995) LB1 – −34.68 −0.42
Global Field Model (Carlut & Courtillot 1998) Q94-me – −36.63 −0.89

distribution. In each case we maximized a likelihood function of the
form

L =
NF I D+NF I +NF∏

i=1

p (Fi ) . (54)

Results are shown in Fig. 16 and summarized in Table 5. Clearly
the Rayleigh–Rician and 1-D normal distributions provide the best
fits; for Hawaii the Rayleigh–Rician (1-D normal) distribution gives
a Kolmogorov–Smirnov probability of 0.4529 (0.2028), and for
Réunion the probability is 0.8815 (0.8983). Neither the log-normal,
nor the gamma distributions provide particularly compelling fits.

Although the reader might find the fits given by either the
Rayleigh–Rician distribution or the 1-D normal distribution to be
acceptable, it is important to recognize that since it follows from a
fully 3-D vector field, only the Rayleigh–Rician provides a reason-
able measure of the intensity of the underlying mean vector Fµ, and
for that matter, the vectorial dispersion σ . A 3-D vectorial average
does not correspond to the average of a 1-D normal distribution, the
bias being given by (39). If one seeks to estimate the intensity of
the mean vector from palaeointensity data, then this is an important
distinction to make.

More specifically, for the Hawaiian (Réunion) data, the best fitting
Rayleigh–Rician gives a mean-vector intensity of Fµ = 29.27 µT
(37.45 µT), which is very different from the 1-D normal expected
intensity of E(F) = 35.81 µT (40.28 µT). This bias stems from
the vectorial variance in the data themselves. Indeed, as we note in
Appendix D, as the vectorial dispersion goes to zero, the expected
intensity approaches the intensity of the mean vector, eq. (D16). For
the Hawaiian (Réunion) data, the best fitting Rayleigh–Rician gives
a relative vectorial dispersion of σ/Fµ = 0.4737 (0.2749), which is
larger than that estimated by using the 1-D dispersion and expected
value, S/E = 0.3455 (0.2456).

6.11 Alternative directional fits

Next, we performed different maximum-likelihood fits to the Hawai-
ian and Réunion Brunhes directional data: using the directional (off-
axis angular) probability density functions corresponding to the 3-D
vectorial Gaussian distribution developed here, and the probability

density functions of the Fisher distribution. In each case we maxi-
mized a likelihood function of the form

L =
NF I D+NI D∏

i=1

p (Ii , Di )
NF I +NI∏

l=1

p (Ik) . (55)

Results are shown in Fig. 16 and summarized in Table 6. Clearly the
directional Gaussian and Fisher distributions provide comparable
fits, although for the Hawaiian and Réunion data neither gives high
Kolmogorov–Smirnov probabilities. Similar to our point about the
intensity experiments discussed above, although the reader might be
inclined to use the directional distributions corresponding to either
a 3-D Gaussian or a Fisher distribution, only the former gives a
meaningful estimate of the relative vectorial dispersion σ/Fµ.

For the Hawaiian (Réunion) data, the best fitting ‘angular-
Gaussian’ distribution gives a Fisher-like dispersion parameter of
(Fµ/σ )2 = 21.79 (24.53), which should be compared with the es-
timates deduced using a Fisher distribution of κ = 21.00 (20.00).
Also note in Table 6 that the dispersion parameter calculated us-
ing straightforward arithmetic means, and which requires both
inclinations and declinations, is 39.75 (23.69); the former value
is drastically different from the maximum-likelihood estimates,
which, in addition to inclination-declination data, also accommo-
date inclination-only data.

7 P A L A E O M A G N E T I C A C Q U I S I T I O N

In order to obtain an accurate estimate of the palaeomagnetic field
at a particular instant in time, an average is usually constructed from
laboratory measurements of multiple samples of an individual rock
deposition or archaeological artefact. Because of the complexities
of the acquisition process, and those of the laboratory methodology,
individual palaeomagnetic measurements, from separate samples of
the same rock deposition or artefact, are never truly identical; they
display a variance about a mean. In this section we examine estima-
tion of the mean acquisition palaeovector and the vectorial variance
about the mean. We analyse published directional and intensity data
taken from two recent lava flows in Mexico and Hawaii. The data
set is summarized in Table 7.
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Figure 13. Maximum-likelihood fits for the Hawaiian data covering the Brunhes and using a unimodal, 3-D Gaussian distribution, eq. (10), and associated
marginal density functions. The marginal probability density functions p and corresponding cumulative distributions P are shown for (a, b) intensity F, (c, d)
inclination I , (e, f) declination D, and (g, h) off-axis angle θ . The fits shown by the solid lines correspond to a maximum-likelihood estimation using all the
available data groups (F, I , D); the dashed lines correspond to an estimation where the declinations have been omitted. Numerical values are given in Table 4.
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Figure 14. Same as Fig. 13 except for the Réunion data covering the Brunhes.
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Figure 15. Comparison of maximum-likelihood fits of the unimodal, 3-D Gaussian distribution to the (positive, top) Hawaiian Brunhes data and (negative,
bottom) Réunion Brunhes data. The sign of the Réunion inclination data has been changed so that they can, more clearly, be compared to the Hawaiian data.
All the available data groups (F, I , D) have been used here. Note that the Réunion data are fitted better than the Hawaiian data, also note the sizable difference
in mean inclination between these two sites.

7.1 Data selection and the data set

Most palaeomagnetic studies of particular rock depositions consist
of relatively few (typically less than ten) separate measurements.
For a robust statistical study of acquisition vectorial statistics, we
concentrate on two lava flows that have been sampled relatively nu-
merously for measurement of both direction and intensity, namely
the 1960 Kilauea, Hawaiian flow and the Holocene Xitle, Mexican
flow. With respect to selecting individual data, we have not applied
statistical criteria, like the simple ones used in selecting data for the

previous discussion of palaeosecular variation, since the data con-
sidered here are individual measurements, as opposed to averages
of ensembles of data. Having said this, most of the measurements
are relatively modern, and therefore we hope reasonably accurate,
with each direction, inclination, and declination (I , D), coming from
magnetically-cleaned samples, and with the absolute intensities (F)
coming from Thellier- or Shaw-type measurements. Both the Ki-
lauea and Xitle flows have been sampled at various heights across
their vertical extents, and the Kilauea flow has been sampled at
different localities across its lateral extent. Therefore, the two data
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Figure 16. A comparison of maximum-likelihood fits with alternative distributions for palaeosecular-variation data. For the intensity data from (a) Hawaii
and (b) Réunion: The Rayleigh–Rician (corresponding to the intensity distribution for the 3-D Gaussian distributions) is shown by a solid line. The 1-D normal
distribution, the log-normal, and the gamma distributions are shown by long-dash, short-dash, and dots, respectively. For the directional data (displayed as
off-axis angle) from (c) Hawaii and (d) Réunion: The unimodal Gaussian off-axis angular distribution is shown by a solid line. The Fisher distribution is shown
by a dashed line. Note that the Rayleigh–Rician and the 1-D normal distributions are nearly identical in (b), and that the Gaussian off-axis angular and Fisher
distributions are nearly identical in (c). Numerical values are given in Tables 5 and 6.

Table 5. Intensity palaeosecular-variation maximum-likelihood estimation and comparison for both Hawaii and Réunion.
Estimation function denotes the distribution assumed in the maximum-likelihood estimation. Fµ, σ , and σ/Fµ denote the
maximum-likelihood estimates of mean vectorial intensity, absolute vectorial dispersion, and relative vectorial dispersion,
but only for a Rayleigh–Rician distribution (for the three-dimensional Gaussian). E(F), S(F), and S/E denote the expected
intensity, the standard deviation of the intensity, and the relative standard deviation. pKS(F) denotes the Kolmogorov–
Smirnov probability that the intensity data could have been drawn from the corresponding distribution and with the
given estimated parameters. The conventional averages, denoted by overbars, are straightforward arithmetic averages and
variances calculated from the data. See Fig. 16.

Estimation function Fµ σ σ/Fµ E(F) S(F) S/E PKS(F)
(µT) (µT) (µT) (µT)

Hawaii
Rayleigh–Rician (23) 29.27 13.86 0.4737 35.77 12.36 0.3455 0.4529
1-D Normal – – – 35.81 12.29 0.3432 0.2028
Log-Normal – – – 35.93 13.45 0.3743 0.0079
Gamma – – – 35.81 12.50 0.3491 0.1514

F̄ σ̄ σ̄ /F̄
Conventional Averages – – – 35.80 12.30 0.3434 –

Réunion
Rayleigh–Rician (23) 37.45 10.29 0.2749 40.30 9.90 0.2456 0.8815
1-D Normal – – – 40.28 9.89 0.2456 0.8983
Log-Normal – – – 40.51 12.19 0.3010 0.3629
Gamma – – – 40.28 11.00 0.2731 0.4166

F̄ σ̄ σ̄ /F̄
Conventional Averages – – – 40.29 9.89 0.2456 –
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Table 6. Directional palaeosecular-variation maximum-likelihood estimation comparison for both Hawaii and Réunion.
Estimation function denotes the distribution assumed in the maximum-likelihood estimation. I µ, Dµ, (Fµ/σ )2, κ de-
note the maximum-likelihood estimates of the mean vectorial inclination, declination, Fisher-like dispersion parameter
(taken from the three-dimensional Gaussian distribution), and the actual Fisher dispersion parameter. pKS(θ ) denotes the
Kolmogorov–Smirnov probability that the directional data could have been drawn from the corresponding distribution. The
conventional averages, denoted by overbars, are straightforward arithmetic averages and dispersion parameters calculated
from the data. See Fig. 16.

Estimation function I µ Dµ (Fµ/σ )2 κ PKS(θ )
(◦) (◦)

Hawaii
Gaussian off-axis angle (27) 29.10 2.42 21.79 – 0.0000
Fisher 28.60 2.48 – 21.00 0.0000

Ī D̄ κ̄

Conventional Averages 30.86 2.48 – 39.75 –
Réunion

Gaussian off-axis angle (27) −39.02 −0.39 24.53 – 0.1528
Fisher −39.06 −0.38 – 20.00 0.2654

Ī D̄ κ̄

Conventional Averages −39.07 −0.35 – 23.69 –

sets probably represent a range of rock properties that could affect
magnetic remanence.

7.2 1960 Kilauea flow

The data from the Kilauea flow consist of a mixture of data groups:
intensities and directions, directions only, and intensities only. We
model the data with a unimodal Gaussian distribution, for which the
likelihood function is

L =
NF I D∏
j=1

pg1
(Fj , I j , D j )

NI D∏
k=1

pg1
(Ik, Dk)

NF∏
m=1

pg1
(Fm) . (56)

Results are summarized in Table 8 and shown in Fig. 17, where we
compare the model probability density functions p and cumulative
distributions P with those of the data themselves. The local vectorial
variance is clearly not spherically-symmetrical; the directions show
a smaller relative vectorial dispersion than do the intensities. Seeking
substantiation of this observation, we conducted a number of other
estimation experiments, systematically omitting various parts of the
Kilauea data and then maximizing the relevant likelihood function.
Using intensity (directional) data alone gives a relative vectorial dis-
persion σ/Fµ of 0.1886 (0.1431). Insofar as these dispersions are
a measure of the relative reliability of individual palaeomagnetic
estimates of vectorial components, we have quantitative support for
vague claims made by other investigators that directional data are

Table 7. Acquisition data set. Locality is that for the general area. Name denotes the particular site or flow name in
the source papers. Lat and Long denote the present latitude and longitude of the site. NF , N I , ND are, respectively, the
number of intensity, inclination, and declination data. Date is that for the sampled flows. Author denotes the source paper.

Locality Name Lat Long NF N I ND Date Author
◦N ◦E

Hawaii, 1960 Kilauea
Hawaii 19.5 204.5 2 0 0 1960 Abokodair (1977)
Hawaii HA32 19.5 204.5 5 6 6 1960 Tanaka (1991)
Hawaii B3200 19.5 204.5 0 11 11 1960 Hagstrum & Champion (1994)
Hawaii HA32 19.5 204.5 3 0 0 1960 Tsunakawa & Shaw (1994)
Hawaii HA3210 19.5 204.5 6 0 0 1960 Tanaka et al. (1995b)
Hawaii H6001, H6002 19.5 204.5 70 78 78 1960 Hill & Shaw (2000)
Total Hawaii 86 95 95

Mexico, Xitle
Mexico Xitle 19.3 260.8 65 55 55 Holocene Böhnel et al. (1997)

somehow more accurate than intensity data. Finally, in Table 8, we
compare our palaeomagnetic estimates of the field for 1960 with
the modern field model values (as others have done before us); the
agreement is sufficiently good to give credence to the palaeomag-
netic method.

7.3 Xitle flow

In Fig. 18 and in Table 8 we summarize results from our maximum-
likelihood experiments for the Xitle flow data. They are consistent
with those obtained for the 1960 Kilauea flow data: a fit to the inten-
sity (directional) data alone gives a large (small) relative vectorial
dispersion, an observation that bolsters the claim that directional
data are more accurate than intensity data.

7.4 Alternative intensity and directional fits

As with the palaeosecular-variation data, for the purpose of com-
parison, we performed a number of different maximum-likelihood
fits to the 1960 Kilauea and Xitle intensity data: using a Rayleigh–
Rician distribution (from the 3-D Gaussian distributions), a 1-D
normal distribution, a log-normal distribution, and a gamma distri-
bution. Results are summarized in Table 9. Note that, amongst the
various fits, there is much more agreement between the estimated
parameters than there is in the analysis of palaeosecular-variation
data. This is related to the fact that the relative vectorial dispersion
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Table 8. 1960 Kilauea, Hawaiian and Xitle, Mexican data-acquisition maximum-likelihood estimation and modern field
comparison. Data types denotes the kind of data used in the estimation, so, for example, F, I , D means that all available
intensity, inclination, declination data were used; I , D means that only inclination and declination data were used, etc.
Fµ, I µ, Dµ, σ , and σ/Fµ denote the maximum-likelihood estimates of intensity, inclination, declination, absolute
vectorial dispersion, and relative vectorial dispersion. pKS(F) (pKS(θ )) denotes the Kolmogorov–Smirnov probability that
the intensity (off-axis angular) data could have been drawn from a three-dimensional Gaussian distribution with the given
estimated parameters. Comparison values are also shown for an axial dipole and a modern global field model. See Figs 17
and 18.

Maximum likelihood Fµ I µ Dµ σ σ/Fµ PKS(F) PKS(θ )
data types (µT) (◦) (◦) (µT)

Hawaii, 1960 Kilauea
F, I , D 34.72 35.80 10.49 5.57 0.1605 0.0691 0.0000
I , D – 35.81 10.46 – 0.1431 – 0.0000
F, I 34.40 36.04 – 5.89 0.1765 0.1432 –
F 33.91 – – 6.65 0.1886 0.2185 –
I – 35.91 – – 0.1566 – –

F I D
Axial Dipole – 35.32 0.00
Global Field Model Bloxham & Jackson (1992) 36.09 36.91 10.98

Mexico, Xitle
F, I , D 71.25 30.16 1.87 10.89 0.1529 0.3395 0.0000
I , D – 30.16 1.87 – 0.1176 – 0.0020
F, I 70.30 30.56 – 12.34 0.1756 0.4049 –
F 68.81 – – 14.37 0.2089 0.7833 –
I – 30.36 – – 0.1373 – –

F I D
Axial Dipole – 35.01 0.00

σ/Fµ of the acquisition data is small: for Kilauea (Xitle) it is 0.2003
(0.2089), compared to the dispersion for the Hawaiian (Réunion)
Brunhes data, 0.4737 (0.2749). The reader will recall, from our
discussion in Section 4, that the Rayleigh–Rician distribution is ap-
proximately normal for small relative vectorial dispersions, and in
such circumstances near agreement in parameter estimation can be
expected.

Similar observations pertain to fits to the Kilauea and Xitle di-
rectional acquisition data. In Table 10 we compare fits made using
the directional distributions from the 3-D Gaussian with those made
using a Fisher distribution. Once again, the agreement is very good,
better than it was for the palaeosecular-variation data, because the
vectorial dispersion σ/Fµ is relatively small. Recall that in Sec-
tion 4 we showed that the Gaussian off-axis angular distribution
is approximately a Fisher distribution for small relative vectorial
dispersions.

8 C O N C L U S I O N S

The Gaussian distribution occupies a prominent position in sta-
tistical analysis. This is due chiefly to the central limit theorem,
which, roughly speaking, asserts that the distribution of the sum of
independent, identically-distributed random variables is approxi-
mately Gaussian. Whether or not it is possible to conceive of a set
of palaeomagnetic vectors as resulting from such a set of random
variables remains something of an open question. There is currently
very little linkage between the magnetohydrodynamic theory of the
Earth’s core and the statistics of secular variation recorded in palaeo-
magnetic data collected at the Earth’s surface, but attempts to cor-
rect this shortcoming are underway (Kono et al. 2000; Dormy et al.
2000; McMillan et al. 2001). On the other hand, the theory of palaeo-
magnetic acquisition is often developed along statistical lines (Néel
1955; Stacey & Banerjee 1974; Dunlop & Özdemir 1997), and in
some such domains there might be some physical justification for
using Gaussian statistics. Of course, practice is often different from

theory, and data which might normally be expected to be Gaussian
are not always delivered so cooperatively by nature. Nonetheless,
since it follows from the central limit theorem, the Gaussian distri-
bution is very appealing from a general, theoretical standpoint. In
contrast to the Gaussian distribution, the Fisher distribution is much
more specialized; it arises from first principles in the context of the
Langevin theory of paramagnetism (Sears 1953; Chikazumi 1964;
Joos 1986), but its broader application to geomagnetism is more
difficult to justify. Furthermore, the Bingham distribution, so far as
we can tell, was introduced simply because it is mathematically con-
venient; there is often almost no inherent justification for its use. Of
course, neither the Fisher distribution nor the Bingham distribution
are appropriate for handling intensity data. For these reasons, and
because the Gaussian distribution is so widely applicable, we were
motivated to develop the 3-D Gaussian and bi-Gaussian distribu-
tions for the palaeomagnetically-relevant spherical coordinates of
intensity, inclination, and declination.

To be sure, more work remains to be done. In this paper we have
concentrated on Gaussian distributions with isotropic variance, but
we have noted, as have others before us, that palaeomagnetic phe-
nomena often display anisotropic statistics. The reader might, there-
fore, be wondering why we didn’t pursue a fully anisotropic theory
here. We had two reasons for first developing the isotropic case.
The first was purely practical: Although some of the key mathemat-
ical formulae, such as the density function for intensity (Rayleigh–
Rician), eq. (23), and directions (off-axis angle), eqs (27) and (28),
are of closed form and reasonably simple, the underlying mathe-
matics needed for developing the isotropic theory is already rather
messy and complicated, as we see in the appendices. Since most
science advances incrementally, it is sensible to consider the sim-
pler case first. Indeed, our own reconnaissance of the mathematics
of the more general anisotropic case leads us to conclude that its
full development would be a much more formidable task. And al-
though Khokhlov et al. (2001) have considered the special case of
the directional (inclination-declination) Gaussian distribution with
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Figure 17. Maximum-likelihood fits for the 1960 Kilauea, Hawaiian data and using a unimodal, 3-D Gaussian distribution, eq. (10), and associated marginal
density functions. The marginal probability density functions p and corresponding cumulative distributions P are shown for (a, b) intensity F, (c, d) inclination
I , (e, f) declination D, and (g, h) off-axis angle θ . The fits shown by the solid lines correspond to a maximum-likelihood estimation using all the available data
groups (F, I , D); the dashed lines in (a, b) correspond to an estimation using intensities only, whilst the dashed line in the other windows (c-h) corresponds to
an estimation using directions only. Numerical values are given in Table 8.
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Figure 18. Same as Fig. 17 except for the Xitle, Mexican data.
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Table 9. Intensity acquisition maximum-likelihood estimation and comparison for both 1960 Kilauea, Hawaii and Xitle, Mexico.
Estimation function denotes the distribution assumed in the maximum-likelihood estimation. Fµ, σ , and σ/Fµ denote the maximum-
likelihood estimates of mean vectorial intensity, absolute vectorial dispersion, and relative vectorial dispersion, but only for a
Rayleigh–Rician distribution (for the three-dimensional Gaussian). E(F), S(F), and S/E denote the expected intensity, the standard
deviation of the intensity, and the relative standard deviation. pKS(F) denotes the Kolmogorov–Smirnov probability that the intensity
data could have been drawn from the corresponding distribution and with the given estimated parameters. The conventional averages,
denoted by overbars, are straightforward arithmetic averages and variances calculated from the data.

Estimation function Fµ σ σ/Fµ E(F) S(F) S/E PKS(F)
(µT) (µT) (µT) (µT)

Hawaii, 1960 Kilauea
Rayleigh–Rician (23) 33.91 6.65 0.2003 35.27 6.65 0.1886 0.2185
1-D Normal – – – 35.27 6.66 0.1887 0.2128
Log-Normal – – – 35.26 6.56 0.1861 0.6833
Gamma – – – 35.26 6.52 0.1849 0.7688

F̄ σ̄ σ̄ /F̄
Conventional Averages – – – 35.26 6.66 0.1888 –

Mexico, Xitle
Rayleigh–Rician (23) 68.81 14.37 0.2089 71.81 14.05 0.1957 0.7833
1-D Normal – – – 71.81 14.04 0.1956 0.7873
Log-Normal – – – 71.93 15.53 0.2159 0.5274
Gamma – – – 71.80 14.65 0.2041 0.0000

F̄ σ̄ σ̄ /F̄
Conventional Averages – – – 71.80 14.05 0.1956 –

anisotropic variance, the important dimension of intensity, together
with all corresponding marginalizations, still needs to be developed
for the 3-D (full-vectorial) anisotropic Gaussian distributions. The
second reason we chose to develop the simpler isotropic case is more
philosophical: sometimes it is necessary to model every detailed
wiggle and wrinkle of a data set in order to extract its informational
content, but at other times such completeness is excessive, espe-
cially if all the investigator seeks is a semi-quantitative conclusion,
or if the data are biased or flawed in some ill-defined way. We say
these things with conviction, since we have observed that the Fisher
distribution, even though it generally lacks a firm theoretical justifi-
cation for its application, has proved to be remarkably useful to the
palaeomagnetic community. And this is true despite the fact that it
actually rarely fits data well! The utility of the Fisher distribution
has been as a benchmark for comparison. The Gaussian distribu-
tions with isotropic variances considered here, and, in particular,
their intensity and directional marginalizations, can fulfill similar
comparative roles.

Important practical issues are the nature and size of biases result-
ing from straightforward, arithmetic averaging of palaeomagnetic

Table 10. Directional acquisition maximum-likelihood estimation and comparison for both 1960 Kilauea, Hawaii and Xitle, Mex-
ico. Estimation function denotes the distribution assumed in the maximum-likelihood estimation. I µ, Dµ, (Fµ/σ )2, κ denote the
maximum-likelihood estimates of the mean vectorial inclination, declination, Fisher-like dispersion parameter (taken from the three-
dimensional Gaussian distribution), and the actual Fisher dispersion parameter. pKS(θ ) denotes the Kolmogorov-Smirnov probability
that the directional data could have been drawn from the corresponding distribution. The conventional averages, denoted by overbars,
are straightforward arithmetic averages and dispersion parameters calculated from the data.

Estimation function I µ Dµ (Fµ/σ )2 κ PKS(θ )
(◦) (◦)

Hawaii, 1960 Kilauea
Gaussian off-axis angle (27) 35.81 10.46 48.83 – 0.0000
Fisher 35.76 10.11 – 46.20 0.0000

Ī D̄ κ̄

Conventional Averages 35.76 10.11 – 45.73 –
Mexico, Xitle

Gaussian off-axis angle (27) 30.16 1.87 72.31 – 0.0020
Fisher 30.32 1.78 – 71.99 0.0004

Ī D̄ κ̄

Conventional Averages 30.31 1.78 – 68.50 –

vectorial parts. Previous studies have highlighted the biased esti-
mates of the direction of the mean palaeovector given by vectorial
averages of unit vector (direction-only) data, and there have been
many studies of biased estimates of the inclination of the mean
palaeovector given by averages of inclination-only data. What we
have demonstrated here is that there are additional biases lurking
around the analysis of intensity data. In fact, using only intensity
data, common arithmetic estimates of the mean and variance do
not correspond to the intensity of the mean vector and the vectorial
variance! Even more insidious is the fact that these biases do not
diminish with increasingly numerous data. One way around these
difficulties is to abandon the simplistic, arithmetic approach and
adopt, instead, a maximum-likelihood approach for parameter esti-
mation. This requires an a priori assumption about the mathemati-
cal form of the underlying probabilistic distribution, here we have
considered Gaussian distributions, and it can require marginaliza-
tions of the underlying distribution, here we have provided those
needed for mixtures of palaeomagnetic data types, be they in-
tensities, inclinations, declinations, or some combination thereof.
With maximum-likelihood estimation, insofar as the assumed
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distribution is appropriate and capable of adequately fitting the data,
then reasonable estimates of the vectorial mean and variance are
possible, with the size of the biases decreasing with increasingly
numerous data.

Palaeomagnetic data from Hawaii and Réunion can be used to
discover some of the general properties of the long-term, global
geomagnetic field. Although Hawaii and Réunion are on almost
opposite latitudes, data from the two sites show significant dif-
ferences in the mean vector. Furthermore, compared to idealized
Gaussian distributions with isotropic variances, the data from
Hawaii, in particular, display a large misfit. It has long been known
that the directional data have an asymmetrical dispersion, usually
characterized as a departure from Fisher statistics. Through our in-
clusion of intensity data in the analysis, the full 3-D palaeovector
field at Hawaii can now be clearly described as anisotropic. On the
other hand, we have shown that the data from Réunion are fitted much
better by a spherically-symmetrical Gaussian distribution. Neither
of these observations, namely differences in the inclination of the
mean vector, and differences in the local variances, are consistent
with the description of the mean field as being a simple geocentric
axial dipole and with secular variation being statistically symmetri-
cal with respect to reflection through the equatorial plane. Instead,
the geomagnetic field is spatially asymmetrical in both its long-term
average form and in terms of its behaviour.

With respect to palaeomagnetic acquisition, it is often asserted,
usually verbally by researchers working in the subject, that palaeoin-
tensity data are less reliable than palaeodirectional data. This is a
difficult suspicion to verify, if only because the issue has not been
especially precisely stated: the two quantities are physically differ-
ent, and indeed, are measured with different units! Straightforward
comparison of their absolute dispersions is not particularly mean-
ingful. Having said this, we acknowledge that the relative reliability
of data is an important issue, and to address it, we have isolated
the measure of relative vectorial dispersion, namely σ/Fµ, as a
common parameter that can be obtained from maximum-likelihood
fits to either intensity data or directional data. When separately
applied to the 1960 Kilauea data from Hawaii and the Xitle data from
Mexico, we find that the relative dispersion is larger, for both data
sets, for intensity data than it is for directional data. We can, there-
fore, make some confirmation of the widely held suspicion that
intensity data are less reliable than directional data.
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A P P E N D I C E S

Following are mathematical formulae for the various marginal probability density functions corresponding to the Gaussian and bi-Gaussian
distributions, eqs (10) and (16), along with corresponding results (when applicable) for the Fisher and Bingham distributions, relevant for
directional data, and the normal and Maxwell distributions, relevant for intensity data. For the 1-D marginal distributions of intensity, inclination,
declination, and off-axis angle, we also present the cumulative distributions, the expected values, and the variances. The mathematical
expressions that depend on the orientation of the distribution relative to a fixed coordinate system, namely those involving inclination and
declination, are complicated. Fortunately, for many applications the most useful results are those for intensity, Appendix D, and off-axis angle,
Appendix E, for which the mathematical expressions are relatively more simple, being expressed in terms of either special functions or infinite
sums of special functions.
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A P P E N D I X A : I N C L I N A T I O N A N D D E C L I N A T I O N

A1 Marginal density function

For the Gaussian distribution, and for the case of palaeomagnetic measurements from fully oriented samples, but for which intensities are not
available, the relevant directional probability density function for inclination and declination is obtained by integrating (10) over all intensities.
Using 3.462.7 of Gradshteyn & Ryzhik (1980) the marginal density function for inclination and declination is
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The off-axis angle θ between a particular unit magnetic vector x̂ and the mean unit vector x̂µ is defined so that

ρ = x̂ · x̂µ = cos θ = cos I cos Iµ cos(D − Dµ) + sin I sin Iµ. (A2)

A result equivalent to (A1) has been given, in a somewhat cumbersome series form, by Bingham (1983); a related result, a generalization for
anisotropic variance, was been found by Khokhlov et al. (2001). Note that with directional data alone the vectorial variance of the Gaussian
distribution can only be determined in a relative sense, measured by (σ/Fµ)2. In the limiting case where the relative vectorial dispersion is
substantially less than one, σ/Fµ � 1, the Gaussian inclination-declination density function (A1) is approximately that for a Fisher distribution
expressed in terms of inclination and declination,

p f

(
I, D | Iµ, Dµ, (σ/Fµ)2

) = 1

4π

(
Fµ

σ

)2
{

sinh

[(
Fµ

σ

)2
]}−1

cos I exp

[(
Fµ

σ

)2

ρ

]
. (A3)

In the opposite limiting case, where the relative vectorial dispersion is substantially greater than one, σ/Fµ � 1, the Gaussian inclination-
declination density function is approximately that for a spherically-uniform distribution of directions,

pu(I, D) = 1

4π
cos I. (A4)

For the bi-Gaussian distribution, the directional probability density function for inclination and declination is obtained by integrating (16)
over all intensities,
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In the limiting case where the relative vectorial dispersion is substantially less than one, σ/Fµ � 1, the bi-Gaussian inclination-declination
density function (A5) is approximately that for a Bingham distribution expressed in terms of inclination and declination,
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The hypergeometric function is a special case of
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for reference see Abramowitz & Stegun (1965) or Spanier & Oldham (1987); for a comprehensive mathematical discussion of hypergeometric
functions see Slater (1966). In the opposite limiting case, where the relative vectorial dispersion is substantially greater than one, σ/Fµ � 1,
the bi-Gaussian inclination-declination density function is approximately that for a uniform distribution of directions, (A4).

A P P E N D I X B : I N T E N S I T Y A N D D E C L I N A T I O N

B1 Marginal density function

We know of no situation where palaeomagnetic data consist of intensity-declination pairs, that is where only inclinations are unavailable.
However, for the sake of completeness, for the Gaussian distribution, we obtain the probability density functions for intensity and declination
by integrating (10) over all inclinations. After expanding the exponential function in terms of an infinite series, making binomial expansions,
using 3.621.5 of Gradshteyn & Ryzhik (1980), then summing, the marginal density function for intensity and declination is
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Hypergeometric functions with negative integer argument (−m) are defined by extension of 15.4.1 of Abramowitz & Stegun (1965) or 60:4:10
of Spanier & Oldham (1987),
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The modified Bessel function is I 1; for reference see Abramowitz & Stegun or Spanier & Oldham.
For the bi-Gaussian distribution, the probability density function for intensity and declination is obtained by integrating (16) over all

inclinations,

pg2

(
F, D | Fµ, Iµ, Dµ, σ 2

) =
∫ + π

2

− π
2

pg2
(F, I, D) d I

= 2

(2π )
3
2 σ

(
F

σ

)2

exp

[
− 1

2

(
F

σ

)2

− 1

2

(
Fµ

σ

)2
] ∞∑

m=0

sin2m Iµ

(2m + 1)!

(
F Fµ

σ 2

)2m

2 F1

[
1, −m

1
2

; − cot2 Iµ cos2(D − Dµ)

]
. (B3)

A P P E N D I X C : I N T E N S I T Y A N D I N C L I N A T I O N

C1 Marginal density function

For the Gaussian distribution, for intensity and inclination palaeomagnetic data taken from an azimuthally-unoriented borecore, such as that
from the Hawaiian Scientific Drilling Project (HSDP), the appropriate marginal probability density function is obtained by integrating (10)
over all declinations. After using 3.937.2 of Gradshteyn & Ryzhik (1980) the marginal density function for intensity and inclination is
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where I 0 is the modified Bessel function; for reference see Abramowitz & Stegun (1965) or Spanier & Oldham (1987).
For the bi-Gaussian distribution, the probability density function for intensity and inclination is obtained by integrating (16) over all

declinations,
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which is similar, but not identical, to the corresponding result for the Gaussian distribution, (C1).

A P P E N D I X D : I N T E N S I T Y

D1 Marginal density function

For the Gaussian distribution, the intensity probability density function is obtained by integrating (10) over all angles. From (B1), and after
expanding the hypergeometric and Bessel functions in terms of power series, using 3.661.1 and 2 of Gradshteyn & Ryzhik (1980) to integrate
term-by-term, then summing, the marginal density function for intensity is

pg1

(
F | Fµ, σ 2

) =
∫ 2π

0

∫ + π
2

− π
2

pg1
(F, I, D) d I d D = σ−1

(
2

π

) 1
2
(

F

Fµ

)
exp

[
−1

2

(
F

σ

)2

− 1

2

(
Fµ

σ

)2
]

sinh

[
F Fµ

σ 2

]
, (D1)

which, as we discuss in Section 4, is a special case of the generalized Rayleigh–Rician density function. In Fig. 2(a) we show examples of the
intensity density function, given different vectorial dispersions σ . In the limiting case where the vectorial dispersion is substantially less than
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the intensity of the mean vector, σ � Fµ, the Gaussian intensity probability density function (D1) is approximately that for a 1-D normal
distribution,
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. (D2)

In the opposite limiting case, where the vectorial dispersion is substantially greater than the intensity of the mean vector, σ � Fµ, the Gaussian
intensity probability density function is approximately that for a Maxwell distribution,
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For more discussion of these limiting properties, see Section 4 and Fig. 6.
For the bi-Gaussian distribution, the intensity probability density function, corresponding to (16), is identical to that for the Gaussian

distribution,
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. (D4)

Obviously, the limiting forms of the intensity density function for the bi-Gaussian distribution are identical to those of the Gaussian distribution
as well.

D2 Relative intensity

For the case where intensity data are only relative, which is usually the case for palaeomagnetic data coming from sedimentary deposits, then
(F , Fµ, σ ) are arbitrary to within a multiplicative constant. The probability density function is obtained by the transformation
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or more succinctly,
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where a is an arbitrary constant. Similarly, the differential volume is obtained by
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This is not to say, however, that the mean intensity Fµ and the variance σ 2 are dependent quantities; in fact, the relative variance (σ/Fµ)2 is
identical for either of the cases of relative or absolute intensity data.

D3 Cumulative distribution

For the Gaussian intensity probability density function (D1), the corresponding cumulative distribution gives the probability that an intensity
lies on the interval [0, F]. After expanding the hyperbolic-sine function in terms of a power series, using 313.1, 2, and 3c of Gröbner &
Hofreiter (1965b), then summing, the intensity cumulative distribution is

Pg1

(
F | Fµ, σ 2

) =
∫ F

0
pg1

(
F ′) d F ′

= 1

2

{
erf

[
F − Fµ√

2σ

]
+ erf

[
F + Fµ√

2σ

]}
− 1√

2π

σ

Fµ

{
exp

[
− 1

2

(
F − Fµ

σ

)2
]

− exp

[
− 1

2

(
F + Fµ

σ

)2
]}

. (D9)

As expected, since erf(∞) = 1,

Pg1

(∞ | Fµ, σ 2
) = 1. (D10)

In Fig. 2(b) we show examples of the intensity cumulative distribution, given different vectorial dispersions σ . In the limiting case where the
vectorial dispersion is substantially less than the intensity of the mean vector, σ � Fµ, the Gaussian intensity cumulative distribution function
(D9) is approximately that for a 1-D normal distribution. From (D2) and using 8.250.1 of Gradshteyn & Ryzhik (1980) we have

Pn

(
F | Fµ, σ 2

) =
∫ F

−∞
pn(F ′) d F ′ = 1

2
+ 1

2
erf

[
F − Fµ√

2σ

]
. (D11)
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In the opposite limiting case, where the vectorial dispersion is substantially greater than the intensity of the mean vector, σ � Fµ, the Gaussian
intensity cumulative distribution function is approximately that for a Maxwell distribution. From (D3), and after integrating by parts and using
8.250.1 of Gradshteyn & Ryzhik, we have

Pm(F | σ 2) =
∫ F

0
pm(F ′) d F ′ = erf

[
1√
2

(
F

σ

)]
−

(
2

π

) 1
2
(

F

σ

)
exp

[
−1

2

(
F

σ

)2
]

. (D12)

For the bi-Gaussian distribution, the cumulative intensity distribution, corresponding to (16), is identical to that for the Gaussian distribution,

Pg2

(
F | Fµ, σ 2

) = Pg1

(
F | Fµ, σ 2

)
. (D13)

D4 Expected value

From the Gaussian intensity density function (D1), and after expanding the hyperbolic-sine function in terms of a power series, using 3.461.3
of Gradshteyn & Ryzhik (1980), then summing, the expected (average) intensity is

Eg1

(
F | Fµ, σ 2

) =
∫ ∞

0
pg1

(F) Fd F = σ

{(
2

π

) 1
2

exp

[
−1

2

(
Fµ

σ

)2
]

+
(

σ

Fµ

+ Fµ

σ

)
erf

[
1√
2

(
Fµ

σ

)]}
. (D14)

This average intensity should not be confused with Fµ, the intensity of the mean vector. In fact, the difference between the two quantities is
one of the biases discussed in Section 5. In Fig. 9(a) we show examples of the intensity bias,

δFg1
= Eg1

(F) − Fµ, (D15)

as a function of the vectorial dispersion σ , given different mean vectorial intensities Fµ. In the limiting case where the vectorial dispersion
is substantially less than the intensity of the mean vector, σ � Fµ, the Gaussian expected intensity (D14) is approximately that for a 1-D
normal distribution. From (D2) and using 3.462.6 of Gradshteyn & Ryzhik we have the well known result

En(F | Fµ) =
∫ ∞

−∞
pn (F) Fd F = Fµ. (D16)

In the opposite limiting case, where the vectorial dispersion is substantially greater than the intensity of the mean vector, σ � Fµ, the Gaussian
expected intensity is approximately that for a Maxwell distribution. From (D3) and using 3.461.3 of Gradshteyn & Ryzhik we have

Em(F | σ 2) =
∫ ∞

0
pm(F)F d F = 2

(
2

π

) 1
2

σ ; (D17)

for reference see, for example, Papoulis & Pillai (2002).
For the bi-Gaussian distribution, the expected intensity, corresponding to (16), is identical to that for the Gaussian distribution,

Eg2

(
F | Fµ, σ 2

) = Eg1

(
F | Fµ, σ 2

)
. (D18)

D5 Variance

From the Gaussian intensity density function (D1), and after expanding the hyperbolic-sine function in terms of a power series, using 3.461.2
of Gradshteyn & Ryzhik (1980), then summing, the expected value for the square of the intensity is the surprisingly compact expression

Eg1

(
F2 | Fµ, σ 2

) =
∫ ∞

0
pg1

(F) F2d F = F2
µ + 3σ 2. (D19)

Of course, with this result the variance of the intensity about its expected value is just

Vg1

(
F | Fµ, σ 2

) = Eg1
(F2) − [

Eg1
(F)

]2
, (D20)

where the last term comes from (D14). The variance of the intensity should not be confused with vectorial variance about the mean vector. In
Fig. 9(b) we show examples of the standard deviation of the intensity,

Sg1

(
F | Fµ, σ 2

) = [
Vg1

(F)
] 1

2 , (D21)

as a function of the vectorial dispersion σ , given different mean vectorial intensities Fµ. In the limiting case where the vectorial dispersion is
substantially less than the intensity of the mean vector, σ � Fµ, the variance of the intensity (D19) is approximately that for a 1-D normal
distribution. From (D2) and using 3.462.6 and 8 of Gradshteyn & Ryzhik we have the well known result

Vn(F | σ 2) =
∫ ∞

−∞
pn(F)(F − Fµ)2 d F = σ 2. (D22)
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In the opposite limiting case, where the vectorial dispersion is substantially greater than the intensity of the mean vector, σ � Fµ, the variance
of the intensity is approximately that for a Maxwell distribution. From (D3) and (D17), and using 3.461.2 of Gradshteyn & Ryzhik, we have

Vm(F | σ 2) =
∫ ∞

0
pm (F) F2d F − [

Em

(
F | σ 2

)]2 = σ 2

{
3 − 8

π

}
; (D23)

for reference see, for example, Papoulis & Pillai (2002).
For the bi-Gaussian distribution, the variance of intensity, corresponding to (16), is identical to that for the Gaussian distribution,

Vg2

(
F | Fµ, σ 2

) = Vg1

(
F | Fµ, σ 2

)
. (D24)

A P P E N D I X E : O F F - A X I S A N G L E

E1 Marginal Density Function

For the Gaussian distribution, the probability density function for the off-axis angle θ can be obtained from (A1). After specializing to I µ =
π/2, making a transformation from inclination to co-inclination (off-axis angle), θ = π/2 − I , then integrating over all declinations, which
gives a factor of 2π , we have

pg1

(
θ | (σ/Fµ)2

) = 1

2
sin θ exp

[
−1

2

(
Fµ

σ

)2
]

×
{ [

1 +
(

Fµ

σ

)2

cos2 θ

]
exp

[
1

2

(
Fµ

σ

)2

cos2 θ

] [
1 + erf

[
1√
2

(
Fµ

σ

)
cos θ

]]
+

(
2

π

) 1
2
(

Fµ

σ

)
cos θ

}
. (E1)

Alternatively, this equation can be obtained from (F1) with I µ = π/2, for which the hypergeometric functions equal unity. A general discussion
of the product of exponential and error functions, such as those in (E1), can be found in Chapter 41 of Spanier & Oldham (1987). In Fig. 2(g)
we show examples of the off-axis angular density function for the Gaussian distribution, given different relative vectorial dispersions σ/Fµ.
In the limiting case where the relative vectorial dispersion is substantially less than one, σ/Fµ � 1, the Gaussian off-axis angular density
function (E1) is approximately that for a Fisher distribution,

p f

(
θ | (σ/Fµ)2

) = 1

2

(
Fµ

σ

)2
{

sinh

[(
Fµ

σ

)2
]}−1

sin θ exp

[(
Fµ

σ

)2

cos θ

]
. (E2)

It is worth noting that for this limiting case, the Fisher dispersion parameter,

κ =
(

Fµ

σ

)2

, (E3)

is simply related to the relative vectorial variance of our Gaussian distribution. In the opposite limiting case, where the relative vectorial
dispersion is substantially greater than one, σ/Fµ � 1, the off-axis angular density function is approximately that for a spherically-uniform
distribution of directions,

pu(θ ) = 1

2
sin θ. (E4)

For more discussion of these limiting properties, see Section 4 and Fig. 7.
For the bi-Gaussian distribution, the off-axis angular probability density function is obtained from (A5),

pg2

(
θ | (σ/Fµ)2

) = 1

2
sin θ exp

[
−1

2

(
Fµ

σ

)2

sin2 θ

] [
1 +

(
Fµ

σ

)2

cos2 θ

]
. (E5)

In Fig. 4(g) we show examples of the off-axis angular density function for the bi-Gaussian distribution, given different relative vectorial
dispersions σ/Fµ. In the limiting case where the relative vectorial dispersion is substantially less than one, σ/Fµ � 1, then the bi-Gaussian
off-axis angular density function (E5) is approximately that for a Bingham distribution,

pb

(
θ | (σ/Fµ)2

) = 1

2

{
1 F1

[
1
2
3
2

;
1

2

(
Fµ

σ

)2
]}−1

sin θ exp

[
1

2

(
Fµ

σ

)2

cos2 θ

]
, (E6)

where the hypergeometric function is given by (A7). It is worth noting that for this limiting case, the Bingham dispersion parameter,

κ = 1

2

(
Fµ

σ

)2

, (E7)

is simply related to the relative vectorial variance of our bi-Gaussian distribution. In the opposite limiting case, where the relative vectorial
dispersion is substantially greater than one, σ/Fµ � 1, the bi-Gaussian off-axis angular density function is approximately that for a spherically-
uniform distribution of directions, (E4). See Section 4 and Fig. 8.
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E2 Cumulative distribution

For the Gaussian off-axis angular probability density function (E1), the corresponding cumulative distribution gives the probability that the
off-axis angle lies on the interval [0, θ ]. After expanding the exponential and exponential-error functions in terms of power series, integrating
term-by-term, then summing, the off-axis cumulative distribution is

Pg1

(
θ | (σ/Fµ)2

) =
∫ θ

0
pg1

(θ ′) dθ ′ = 1

2

[
1 + erf

[
1√
2

(
Fµ

σ

)]
− cos θ exp

[
−1

2

(
Fµ

σ

)2

sin2 θ

] {
1 + erf

[
1√
2

(
Fµ

σ

)
cos θ

]}]
. (E8)

As expected,

Pg1

(
π | (σ/Fµ)2

) = 1. (E9)

In Fig. 2(h) we show examples of the Gaussian off-axis cumulative distribution, given different relative vectorial dispersions σ/Fµ. In the
limiting case where the relative vectorial dispersion is substantially less than one, σ/Fµ � 1, the Gaussian off-axis cumulative distribution
(E8) is approximately that for a Fisher distribution. From (E2) we have, almost trivially,

Pf

(
θ | (σ/Fµ)2

) =
∫ θ

0
p f

(
θ ′) dθ ′ = 1

2

{
sinh

[(
Fµ

σ

)2
]}−1 {

exp

[(
Fµ

σ

)2
]

− exp

[(
Fµ

σ

)2

cos θ

]}
. (E10)

In the opposite limiting case, where the relative vectorial dispersion is substantially greater than one, σ/Fµ � 1, the Gaussian off-axis
cumulative distribution is approximately that for a spherically-uniform distribution of directions. From (E4) we have

Pu (θ ) =
∫ θ

0
pu

(
θ ′) dθ ′ = 1

2
− 1

2
cos θ. (E11)

For the bi-Gaussian off-axis angular probability density function (E5), the corresponding cumulative distribution is just

Pg2

(
θ | (σ/Fµ)2

) =
∫ θ

0
pg2

(
θ ′) dθ ′ = 1

2
− 1

2
cos θ exp

[
−1

2

(
Fµ

σ

)2

sin2 θ

]
. (E12)

In Fig. 4(h) we show examples of the bi-Gaussian off-axis cumulative distribution, given different relative vectorial dispersions σ/Fµ. In the
limiting case where the relative vectorial dispersion is substantially less than one, σ/Fµ � 1, the bi-Gaussian off-axis angular cumulative
distribution (E12) is approximately that for a Bingham distribution. From (E6) we have

Pb

(
θ | (σ/Fµ)2

) =
∫ θ

0
pb

(
θ ′) dθ ′ = 1√

2

(
σ

Fµ

) {
1 F1

[
1
2
3
2

;
1

2

(
Fµ

σ

)2
]}−1

×
{

exp

[
1

2

(
Fµ

σ

)2
]

daw

[
1√
2

(
Fµ

σ

)]
− exp

[
1

2

(
Fµ

σ

)2

cos2 θ

]
daw

[
1√
2

(
Fµ

σ

)
cos θ

] }
. (E13)

Dawson’s integral is given by

daw(t) =
∫ t

0
exp(s2 − t2) ds = t

∞∑
j=0

(−2t2) j

(2 j + 1)!!
; (E14)

for reference see Abramowitz & Stegun (1965) or Spanier & Oldham (1987). In the opposite limiting case, where the relative vectorial dispersion
is substantially greater than one, σ/Fµ � 1, the bi-Gaussian off-axis cumulative distribution is approximately that for a spherically-uniform
distribution of directions, (E11).

E3 Expected value

With the Gaussian off-axis angular density function (E1), and after expanding the exponential and exponential-error functions in terms of
power series, using 2.512.2 and 3 of Gradshteyn & Ryzhik (1980) to integrate term-by-term, then summing, the expected off-axis angle is

Eg1

(
θ | (σ/Fµ)2

) =
∫ π

0
pg1

(θ ) θdθ = π

2

{
1 − erf

[
1√
2

(
Fµ

σ

)]}
+

(π

2

) 1
2
(

σ

Fµ

) {
1 − exp

[
−1

2

(
Fµ

σ

)2
]}

. (E15)

In Fig. 9(g) we show examples of the expected off-axis angle for a Gaussian distribution as a function of relative vectorial dispersion σ/Fµ.
In the limiting case where the relative vectorial dispersion is substantially less than one, σ/Fµ � 1, the Gaussian expected off-axis angle
(E15) is approximately that for a Fisher distribution. From (E2) the expected off-axis angle is

E f

(
θ | (σ/Fµ)2

) =
∫ π

0
p f (θ ) θdθ = π

2

{
sinh

[(
Fµ

σ

)2
]}−1 {

I0

[(
Fµ

σ

)2
]

− exp

[
−

(
Fµ

σ

)2
]}

, (E16)

where I 0 is the modified Bessel function; for reference see Abramowitz & Stegun (1965) or Spanier & Oldham (1987). In the opposite limiting
case where the relative vectorial dispersion is substantially greater than one, σ/Fµ � 1, the expected off-axis angle is approximately that for
a spherically-uniform distribution of directions. From (E4) we have
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Eu (θ ) =
∫ π

0
pu (θ ) θdθ = π

2
, (E17)

which can be easily checked.
For the bi-Gaussian off-axis angular density function (E5), the expected off-axis angle is just

Eg2
(θ ) =

∫ π

0
pg2

(θ ) θdθ = π

2
, (E18)

which can be deduced by consideration of symmetry. The expected off-axis angle for the Bingham distribution is identical,

Eb (θ ) =
∫ π

0
pb (θ ) θdθ = π

2
. (E19)

E4 Variance

With the Gaussian off-axis angular density function (E1), and after expanding the exponential and exponential-error functions in terms of
power series, using 2.512.2 and 3 of Gradshteyn & Ryzhik (1980) to integrate by parts and term-by-term, then summing, the expected square
of the off-axis angle is

Eg1

(
θ2 | (σ/Fµ)2

) =
∫ π

0
pg1

(θ ) θ2 dθ = π

[{(
π

2

) 1
2
(

σ
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+ π

2

}
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{(
π

2

) 1
2
(

σ
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+ π

2

}
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− exp
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− 1
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(
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]{(
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) 1
2
(

σ

Fµ

)
−

∞∑
m=0

(2m + 1)!!

(2m + 2)!!(2m + 2)!!

(
Fµ

σ

)2m

3 F2

[
1
2 , m + 1, m + 3

2

m + 2, m + 2
; 1

] }]
. (E20)

where the hypergeometric functions are given by (A7). With this result, the variance of the off-axis angle about its expected value is just

Vg1

(
θ | (σ/Fµ)2

) = Eg1
(θ2) − [

Eg1
(θ )

]2
. (E21)

In Fig. 9(h) we show examples of the standard deviation of the off-axis angle for a Gaussian distribution,

Sg1

(
θ | (σ/Fµ)2

) = [
Vg1

(θ )
] 1

2 , (E22)

as a function of relative vectorial dispersion σ/Fµ. In the limiting case where the relative vectorial dispersion is substantially less than one,
σ/Fµ � 1, the Gaussian expected square of the off-axis angle (E20) is approximately that for a Fisher distribution. From (E2) the expected
square of the off-axis angle is

E f

(
θ2 | (σ/Fµ)2

) =
∫ π

0
p f (θ ) θ2dθ = π

{
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Fµ

σ
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(
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−
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(
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2
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; 1

] }
. (E23)

The modified Bessel function is I 0; for reference see Abramowitz & Stegun (1965) or Spanier & Oldham (1987). In the opposite limiting
case where the relative vectorial dispersion is substantially greater than one, σ/Fµ � 1, the Gaussian expected square of the off-axis angle
is approximately that for a spherically-uniform distribution of directions. From (E4) we have

Eu(θ 2) =
∫ π

0
pu (θ ) θ2 dθ = 1

2
π 2 − 2, (E24)

which can be easily checked.
For the bi-Gaussian off-axis angular density function (E5), the variance of the off-axis angle is obtained using the expected square of the

angle,

Eg2

(
θ2 | (σ/Fµ)2

) =
∫ π

0
pg2

(θ ) θ2 dθ = π

{
π

2
−
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2
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σ
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] ∞∑
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)2m
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2
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; 1

] }
. (E25)

In the limiting case where the relative vectorial dispersion is substantially less than one, σ/Fµ � 1, the bi-Gaussian expected square of the
off-axis angle (E25) is approximately that for a Bingham distribution. From (E6) the expected square of the off-axis angle is

Eb

(
θ2 | (σ/Fµ)2

) =
∫ π

0
pb (θ ) θ2dθ = π
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1
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+
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(E26)
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where Dawson’s integral is given by (E15). In the opposite limiting case, where the relative vectorial dispersion is substantially greater than
one, σ/Fµ � 1, the bi-Gaussian expected square of the off-axis angle is approximately that for a spherically-uniform distribution of directions,
(E24).

A P P E N D I X F : I N C L I N A T I O N

F1 Marginal density function

The case of inclination-only data is relevant to studies of azimuthally-unoriented borecores. For the Gaussian distribution, the probability
density function is obtained by integrating (10) over all intensities and declinations. From (C1), and after expanding the last exponential
function in terms of an infinite series, then using 6.631.1 of Gradshteyn & Ryzhik (1980) to integrate term-by-term, the marginal density
function for inclination is

pg1

(
I | Iµ, (σ/Fµ)2

) =
∫ 2π

0

∫ ∞

0
pg1

(F, I, D) d Fd D = cos I exp
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×
∞∑
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] }
, (F1)

where the hypergeometric functions are given by (A7). Note that with inclination-only data the vectorial variance of the Gaussian distribution
can only be determined in a relative sense, measured by (σ/Fµ)2. We show examples of the inclination density function for the Gaussian
distribution in Fig. 2(c), given different relative vectorial dispersions σ/Fµ, and in Fig. 3(c), given different mean vectorial inclinations I µ.
In the limiting case where the relative vectorial dispersion is substantially less than one, σ/Fµ � 1, the Gaussian inclination density function
(F1) is approximately that for a Fisher distribution. From (A3) and using 3.915.2 of Gradshteyn & Ryzhik we have

p f

(
I | Iµ, (σ/Fµ)2

) =
∫ 2π
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σ
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cos I cos Iµ

]
,(F2)

which is a result first obtained by Briden & Ward (1966). This should be compared with eq. (C1), the intensity-inclination density function
for the Gaussian distribution. In the opposite limiting case, where the relative vectorial dispersion is substantially greater than one, σ/Fµ �
1, the Gaussian inclination density function is approximately that for a spherically-uniform distribution of directions. From (A4) we have

pu(I ) =
∫ 2π

0
pu(I, D) d D = 1

2
cos I. (F3)

For the bi-Gaussian distribution, the inclination probability density function is obtained by integrating (16) over all intensities and declina-
tions,

pg2
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) =
∫ 2π

0

∫ ∞
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. (F4)

We show examples of the inclination density function for the bi-Gaussian distribution in Fig. 4(c), given different relative vectorial dispersions
σ/Fµ, and in Fig. 5(c), given different mean vectorial inclinations I µ. In the limiting case where the relative vectorial dispersion is substantially
less than one, σ/Fµ � 1, the bi-Gaussian inclination density function (F4) is approximately that for a Bingham distribution. From (A6),
and after expanding the exponential function in terms of nested infinite series, using 331.25 of Gröbner & Hofreiter (1965a) to integrate
term-by-term, then summing, we have

pb

(
I | Iµ, (σ/Fµ)2

) =
∫ 2π

0
pb (I, D) d D = 1

2

{
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[
1
2
3
2
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σ
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]

×
∞∑

m=0

1
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(
Fµ

σ

)4m

cos2m I cos2m Iµ sin2m I sin2m Iµ1 F1

[
m + 1

2

m + 1
;

1

2

(
Fµ

σ

)2

cos2 I cos2 Iµ

]
. (F5)

In the opposite limiting case, where the relative vectorial dispersion is substantially greater than one, σ/Fµ � 1, the bi-Gaussian inclination
density function is approximately that for a spherically-uniform distribution of directions, (F3).

F2 Cumulative distribution

For the Gaussian inclination probability density function (F1), the corresponding cumulative distribution gives the probability that an inclination
lies on the interval [− π/2, I ]. After expanding the hypergeometric functions in terms of power series, using 2.511.4 of Gradshteyn & Ryzhik
(1980) to integrate term-by-term, then summing, the inclination cumulative distribution is
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) =
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×
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. (F6)

The first set of hypergeometric functions are given by (B2), for which we use the property

�

[
1

2
− n

]
= (−2)n√π

(2n − 1)!!
for n = 0, 1, 2, ...; (F7)

see 43:4:3 of Spanier & Oldham (1987). With this,

2 F1

[
1, −m
1
2 − n

; z

]
=

m∑
j=0

(2m)!!(2n − 2 j − 1)!!

(2n − 1)!!(2m − 2 j)!!
z j . (F8)

The second set of hypergeometric functions are defined using 15.4.2 of Abramowitz & Stegun (1965),

2 F1

[
1, −m
−n

; z

]
=

m∑
j=0

(2m)!!(2n − 2 j)!!

(2n)!!(2m − 2 j)!!
z j . (F9)

As expected,

Pg1

(
π

2
| Iµ, (σ/Fµ)2

)
= 1, (F10)

which we have checked numerically. We show examples of the Gaussian inclination cumulative distribution in Fig. 2(c), given different relative
vectorial dispersions σ/Fµ, and in Fig. 3(c), given different mean vectorial inclinations I µ. In the limiting case where the relative vectorial
dispersion is substantially less than one, σ/Fµ � 1, the Gaussian inclination cumulative distribution (F6) is approximately that for a Fisher
distribution. From (F2) the inclination cumulative distribution is
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−m − n
; sec2 I

] }]
, (F11)

which is probably the most unpleasant formula in this paper. Some re-expression can be made in terms of modified Bessel functions, but we
have not been able to reduce (F11) to a more compact or more symmetrical form. The hypergeometric functions are given by (A7), (B2),
(F8), and (F9). In the opposite limiting case, where the relative vectorial dispersion is substantially greater than one, σ/Fµ � 1, the Gaussian
inclination cumulative distribution is approximately that for a spherically-uniform distribution of directions. From (F3) we have

Pu(I ) =
∫ I

− π
2
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(
I ′) d I ′ = 1

2
+ 1

2
sin I. (F12)

For the bi-Gaussian inclination probability density function (F4), the corresponding cumulative distribution is just
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) =
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×
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]
. (F13)

We show examples of the bi-Gaussian inclination cumulative distribution in Fig. 4(d), given different relative vectorial dispersions σ/Fµ,
and in Fig. 5(d), given different mean vectorial inclinations I µ. In the limiting case where the relative vectorial dispersion is substantially less
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than one, σ/Fµ � 1, the bi-Gaussian inclination cumulative distribution (F13) is approximately that for a Bingham distribution. From (F5)
the inclination cumulative distribution is
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) =
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×
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; sec2 I

]
. (F14)

In the opposite limiting case, where the relative vectorial dispersion is substantially greater than one, σ/Fµ � 1, the bi-Gaussian inclination
cumulative distribution is approximately that for a spherically-uniform distribution of directions, (F12).

F3 Expected value

With the Gaussian inclination density function (F1), and after expanding the hypergeometric functions in terms of power series, using 2.511.1
and 4 of Gradshteyn & Ryzhik (1980) to integrate by parts and term-by-term, then summing, the expected inclination is
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) =
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×
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∞∑
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m + 2, m + 2
; 1

]
, (F15)

where the hypergeometric functions are given by (B2). This average inclination should not be confused with I µ, the inclination of the mean
vector. In Fig. 9(c) we show examples of the inclination bias,

δ Ig1
= Eg1

(I ) − Iµ, (F16)

as a function of the relative vectorial dispersion σ/Fµ, given different mean vectorial inclinations I µ. In the limiting case where the relative
vectorial dispersion is substantially less than one, σ/Fµ � 1, the Gaussian expected inclination density function (F15) is approximately that
for a Fisher distribution. From (F2) the expected inclination is

E f
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) =
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2
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{
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×
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; 1

]
. (F17)

In the opposite limiting case, where the relative vectorial dispersion is substantially greater than one, σ/Fµ � 1, the Gaussian inclination
density function is approximately that for a spherically-uniform distribution of directions. From (F3) we have

Eu(I ) =
∫ π

2

− π
2

pu(I )I d I = 0. (F18)

For the bi-Gaussian inclination density function (F4), the expected inclination is just

Eg2
(I ) =

∫ + π
2

− π
2

pg2
(I ) I d I = 0, (F19)

which can be deduced by consideration of symmetry. The expected inclination for the Bingham distribution is identical,

Eb (I ) =
∫ + π

2

− π
2

pb (I ) I d I = 0. (F20)

F4 Variance

With the Gaussian inclination probability density function (F1), and after expanding the hypergeometric functions in terms of power series,
using 2.511.1 and 4 of Gradshteyn & Ryzhik (1980) to integrate by parts and term-by-term, then summing, the expected value for the square
of the inclination is
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2

; 1

]
, (F21)

where we use (F7) and where the hypergeometric functions are given by (A7). Of course, with this result the variance of the inclination about
its expected value is just

Vg1

(
I | Iµ, (σ/Fµ)2

) = Eg1
(I 2) − [

Eg1
(I )

]2
, (F22)

where the last term comes from (F15). In Fig. 9(d) we show examples of the standard deviation of inclination for a Gaussian distribution,

Sg1

(
I | Iµ, (σ/Fµ)2

) = [
Vg1

(I )
] 1

2 , (F23)

as a function of the relative vectorial dispersion σ/Fµ and for different mean vectorial inclinations I µ. In the limiting case where the relative
vectorial dispersion is substantially less than one, σ/Fµ � 1, the Gaussian expected square of the inclination (F21) is approximately that for
a Fisher distribution. From (F2) the expected value for the square of the inclination is
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In the opposite limiting case, where the relative vectorial dispersion is substantially greater than one, σ/Fµ � 1, the Gaussian inclination
density function is approximately that for a spherically-uniform distribution of directions. From (F3) we have

Eu(I 2) =
∫ + π

2

− π
2

pu (I ) I 2 d I =
(

π

2

)2

− 2, (F25)

which should be compared with that for the off-axis angle, (E24).
For the bi-Gaussian inclination density function (F4), the variance of the inclination is just

Vg2

(
I | Iµ, (σ/Fµ)2

) = Eg1

(
I 2 | Iµ, (σ/Fµ)2

)
, (F26)

which can be deduced by consideration of symmetry and the fact that the expected inclination for such a distribution is zero, (F19). In the
limiting case where the relative vectorial dispersion is substantially less than one, σ/Fµ � 1, the bi-Gaussian expected square of the inclination
(F21) is approximately that for a Bingham distribution. From (F5) the expected value for the square of the inclination is
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In the opposite limiting case, where the relative vectorial dispersion is substantially greater than one, σ/Fµ � 1, the bi-Gaussian inclination
density function is approximately that for a spherically-uniform distribution of directions, (F25).

A P P E N D I X G : D E C L I N A T I O N

G1 Marginal density function

We know of no situation where palaeomagnetic data consist of only declinations, that is where neither intensities nor inclinations are available.
However, for the sake of completeness, for the Gaussian distribution, we obtain the declination probability density functions by integrating
(10) over all intensities and inclinations. From (B1), and after expanding the hypergeometric and Bessel functions in terms of power series,
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making binomial expansions, using 3.461.2 and 3 of Gradshteyn & Ryzhik (1980) to integrate term-by-term, then summing, the marginal
density function for declination is

pg1
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]
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where the hypergeometric functions are given by (B2). Note that with declination-only data the vectorial variance of the Gaussian distribution
can only be determined in a relative sense, measured by (σ/Fµ)2. We show examples of the declination density function for the Gaussian
distribution in Fig. 2(e), given different relative vectorial dispersions σ/Fµ, and in Fig. 3(e), given different mean vectorial inclinations I µ. In
the limiting case where the relative vectorial dispersion is substantially less than one, σ/Fµ � 1, the Gaussian declination density function
(G1) is approximately that for a Fisher distribution. From (A3) we have
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) =
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where the integration performed is like that used to derive (B1). The modified Bessel function is I 1; for reference see Abramowitz & Stegun
(1965) or Spanier & Oldham (1987). In the opposite limiting case, where the relative vectorial dispersion is substantially greater than one,
σ/Fµ � 1, the Gaussian declination density function is approximately that for a spherically-uniform distribution of directions,

pu(D) = 1

2π
. (G3)

For the bi-Gaussian distribution, the declination probability density function is obtained by integrating (16) over all intensities and inclina-
tions,
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We show examples of the declination density function for the bi-Gaussian distribution in Fig. 4(e), given different relative vectorial dispersions
σ/Fµ, and in Fig. 5(e), given different mean vectorial inclinations I µ. In the limiting case where the relative vectorial dispersion is substantially
less than one, σ/Fµ � 1, the bi-Gaussian declination density function (G4) is approximately that for a Bingham distribution. From (A6), and
after expanding the exponential function in terms of a power series, making binomial expansions, using 2.511.4 of Gradshteyn & Ryzhik to
integrate term-by-term, then summing, we have
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In the opposite limiting case, where the relative vectorial dispersion is substantially greater than one, σ/Fµ � 1, the bi-Gaussian declination
density function is approximately that for a spherically-uniform distribution of directions, (G3).

G2 Cumulative Distribution

For the Gaussian declination probability density function (G1), the corresponding cumulative distribution gives the probability that a declination
lies on the interval [β, β + D],

Pg1

(
D, β | Iµ, Dµ, (σ/Fµ)2

) =
∫ β+D

β

pg1
(D′) d D′. (G6)

Note that, because of the periodic nature of declination, the choice of the angle β defines this cumulative distribution for all arbitrary shifts
and parameterizations on the circle. Expanding the hypergeometric and exponential functions in terms of power series, then using 2.512.2
and 3 of Gradshteyn & Ryzhik (1980) to integrate term-by-term, we obtain
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so that the cumulative distribution is
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As expected,
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) = 1, (G9)

which we have checked numerically. We show examples of the Gaussian declination cumulative distribution in Fig. 2(f), given different relative
vectorial dispersions σ/Fµ, and in Fig. 3(f), given different mean vectorial inclinations I µ. In the limiting case where the relative vectorial
dispersion is substantially less than one, σ/Fµ � 1, the Gaussian declination cumulative distribution (G6) is approximately that for a Fisher
distribution. From (G2) the declination cumulative distribution is just
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where the hypergeometric functions are given by (F8). In the opposite limiting case, where the relative vectorial dispersion is substantially
greater than one, σ/Fµ � 1, the Gaussian declination cumulative distribution is approximately that for a spherically-uniform distribution of
directions. From (G3) we have
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. (G12)

For the bi-Gaussian declination probability density function (G4), the corresponding cumulative distribution is just
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∫ β+D

β

pg2
(D′) d D′, (G13)

which can be obtained using

Qg2

(
D′ | Iµ, (σ/Fµ)2

) = D′

2π
+ 1

2π
exp

[
−1

2

(
Fµ

σ

)2
]

tan D′

×
∞∑

m=0

m∑
n=0

n−1∑
j=0

(2n − 2 j − 2)!!

(2n)!!(2m − 2n)!!(2n − 2 j − 1)!!

(
Fµ

σ

)2m

sin2m Iµ cot2n Iµ cos2n D′ sec2 j D′. (G14)

We show examples of the bi-Gaussian declination cumulative distribution in Fig. 4(f), given different relative vectorial dispersions σ/Fµ,
and in Fig. 5(f), given different mean vectorial inclinations I µ. In the limiting case where the relative vectorial dispersion is substantially less
than one, σ/Fµ � 1, the bi-Gaussian declination cumulative distribution (G6) is approximately that for a Bingham distribution. From (G5)
the declination cumulative distribution is just

Pb

(
D, β | Iµ, Dµ, (σ/Fµ)2

) =
∫ β+D

β

pb(D′) d D′, (G15)

which can be obtained using

Qb

(
D′ | Iµ, (σ/Fµ)2

) = D′

2π
+ 1

2π

{
1 F1

[
1
2
3
2

;
1

2

(
Fµ

σ

)2
]}−1

tan D′

×
∞∑

m=0

m∑
n=0

n−1∑
j=0

(2n − 2 j − 2)!!

(2n)!!(2m − 2n)!!(2n − 2 j − 1)!!(2m + 1)

(
Fµ

σ

)2m

sin2m Iµ cot2n Iµ cos2n D′ sec2 j D′. (G16)

In the opposite limiting case, where the relative vectorial dispersion is substantially greater than one, σ/Fµ � 1, the bi-Gaussian declination
cumulative distribution is approximately that for a spherically-uniform distribution of directions, (G12).
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G3 Expected value

From the Gaussian declination density function (G1), the expected declination is obtained by integration,

Eg1

(
D | Iµ, Dµ, (σ/Fµ)2

) =
∫ 2π

0
pg1

(D) D d D. (G17)

In fact, performing this integration is not necessary, since by symmetry we know that

Eg1

(
D | Iµ, Dµ, (σ/Fµ)2

) = Dµ, (G18)

unless, of course, I µ = ±90◦, in which case the mean declination is indeterminate. Furthermore, as one might expect, in the limit as the
relative vectorial dispersion goes to infinity, the expected declination becomes that for a spherically-uniform distribution of directions; in
other words, it becomes indeterminate, which we have checked numerically. The declination bias, such as it is, for a Gaussian distribution, is
shown in Fig. 9(e).

For the bi-Gaussian declination density function (G4), the expected declination Eg2
(D) is indeterminate for all mean inclinations I µ, which

can be deduced by consideration of symmetry. What this means, in practice, is that an arithmetic mean of a set of declinations drawn from a
bi-Gaussian distribution is not likely to be an accurate estimate of ±Dµ, and furthermore, the mean will be unstable to the addition of data.
Such estimation difficulties do not exist, however, if one adopts a maximum-likelihood approach for estimating the declination of the mean
vector, namely ±Dµ, although because of symmetry the result is arbitrary to within some multiple of π .

G4 Variance

With the Gaussian declination probability density function (G1), and after expanding the hypergeometric and exponential functions in terms
of power series, then using 1.320.5, 7 and 3.761.10 of Gradshteyn and Ryzhik 1980 to integrate term-by-term, the variance of the declination
about the mean declination is

Vg1

(
D | Iµ, (σ/Fµ)2

) =
∫ Dµ+π

Dµ−π

pg1
(D) (D − Dµ)2 d D = 1

3
π 2 + 4 exp

[
−1

2

(
Fµ

σ

)2
] ∞∑

m=0

m∑
n=0

sin2m Iµ cot2n Iµ

(2m − 2n)!!

(
Fµ

σ

)2m

×
{

n−1∑
j=0

(2n)!!

(2 j)!!(4n − 2 j)!!(2n − 2 j)2
−

(
π

2

) 1
2 n∑

j=0

(2n + 1)!!

(2 j)!!(4n − 2 j + 2)!!(2n − 2 j + 1)2

(
Fµ

σ

)
cos Iµ

}
. (G19)

Since the variance is defined relative to the mean declination, this result is independent of Dµ. In Fig. 9(f) we show examples of the Gaussian
standard deviation of declination,

Sg1

(
D | Iµ, (σ/Fµ)2

) = [
Vg1

(D)
] 1

2 , (G20)

as a function of the relative vectorial dispersion σ/Fµ, given different mean vectorial inclinations I µ. In the limiting case where the relative
vectorial dispersion is substantially less than one, σ/Fµ � 1, the Gaussian declination variance (G19) is approximately that for a Fisher
distribution. From (G2) the declination variance is

V f

(
D | Iµ, (σ/Fµ)2

) =
∫ Dµ+π

Dµ−π

p f (D) (D − Dµ)2 d D = 1

3
π 2 + 4

(
Fµ

σ

)2
{

sinh

[(
Fµ

σ

)2
]}−1 ∞∑

m=0

m∑
n=0

sin2m Iµ cot2n Iµ

(2m − 2n)!!

(
Fµ

σ

)4m

×
{

n−1∑
j=0

(2n)!!

(2m + 1)!!(2 j)!!(4n − 2 j)!!(2n − 2 j)2
−

(
π

2

) n∑
j=0

(2n + 1)!!

(2m + 2)!!(2 j)!!(4n − 2 j + 2)!!(2n − 2 j + 1)2

(
Fµ

σ

)2

cos Iµ

}
. (G21)

In the opposite limiting case, where the relative vectorial dispersion is substantially greater than one, σ/Fµ � 1, the Gaussian declination
variance is approximately that for a spherically-uniform distribution of directions. From (G3) we have

Vu (D) =
∫ Dµ+π

Dµ−π

pu (D) (D − Dµ)2d D = 1

3
π 2. (G22)

For the bi-Gaussian declination probability density function (G4), the variance of the declination about the mean declination is just

Vg2

(
D | Iµ, (σ/Fµ)2

) =
∫ Dµ+π

Dµ−π

pg2
(D) (D − Dµ)2 d D

= 1

3
π 2 + 4 exp

[
−1

2

(
Fµ

σ

)2
] ∞∑

m=0

m∑
n=0

n−1∑
j=0

(2n)!!

(2m − 2n)!!(2 j)!!(4n − 2 j)!!(2n − 2 j)2

(
Fµ

σ

)2m

sin2m Iµ cot2n Iµ. (G23)

In the limiting case where the relative vectorial dispersion is substantially less than one, σ/Fµ � 1, the bi-Gaussian declination variance
(G23) is approximately that for a Bingham distribution. From (G5) the declination variance is
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Vb

(
D | Iµ, (σ/Fµ)2

) =
∫ Dµ+π

Dµ−π

pb (D) (D − Dµ)2 d D

=
{

1 F1

[
1
2
3
2

;
1

2

(
Fµ

σ

)2
] }−1{√

2

3
π 2

(
σ

Fµ

)
exp

[
1

2

(
Fµ

σ

)2
]

daw

[
1√
2

(
Fµ

σ

)]

+ 4
∞∑

m=0

m∑
n=0

n−1∑
j=0

(2n)!!

(2m − 2n)!!(2 j)!!(4n − 2 j)!!(2m + 1)(2n − 2 j)2

(
Fµ

σ

)2m

sin2m Iµ cot2n Iµ

}
, (G24)

where Dawson’s integral is given by (E14). In the opposite limiting case, where the relative vectorial dispersion is substantially greater than
one, σ/Fµ � 1, the bi-Gaussian declination density function is approximately that for a spherically-uniform distribution of directions, (G22).
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